
Leader in Data Quality
and Data Integration

www.dataflux.com
877–846–FLUX

International
+44 (0) 1753 272 020

DataFlux dfPower Studio

This page is intentionally blank

DataFlux dfPower Studio

Getting Started Guide

Version 8.2 Service Pack 1

February 4, 2010

This page is intentionally blank

Contact DataFlux

Corporate Headquarters

DataFlux Corporation
940 NW Cary Parkway, Suit 201
Cary, NC 27513-2792
Toll Free Phone: 877-846-FLUX (3589)
Toll Free Fax: 877-769-FLUX (3589)
Local Phone: 919-447-3000
Local Fax: 919-447-3100
Web: http://www.dataflux.com

European Headquarters

DataFlux UK Limited
59-60 Thames Street
WINDSOR
Berkshire
SL4 ITX
United Kingdom
UK (EMEA): +44(0) 1753 272 020

Technical Support

Phone: 919-531-9000
Email: techsupport@dataflux.com
Web: http://www.dataflux.com/Resources/DataFlux-Resources/Customer-Care-
Portal/Technical-Support.aspx

Legal Information
Copyright © 1997 - 2009 DataFlux Corporation LLC, Cary, NC, USA. All Rights Reserved.

DataFlux and all other DataFlux Corporation LLC product or service names are registered trademarks or
trademarks of, or licensed to, DataFlux Corporation LLC in the USA and other countries. ® indicates USA
registration.

Apache Portable Runtime License Disclosure

Copyright © 2008 DataFlux Corporation LLC, Cary, NC USA.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
or implied. See the License for the specific language governing permissions and limitations under the
License.

Apache/Xerces Copyright Disclosure

The Apache Software License, Version 1.1

Copyright (c) 1999-2003 The Apache Software Foundation. All rights reserved.

DataFlux dfPower Studio i

http://www.dataflux.com/

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. The end-user documentation included with the redistribution, if any, must include the following
acknowledgment:

"This product includes software developed by the Apache Software Foundation
(http://www.apache.org/)."

Alternately, this acknowledgment may appear in the software itself, if and wherever such third-
party acknowledgments normally appear.

4. The names "Xerces" and "Apache Software Foundation" must not be used to endorse or promote
products derived from this software without prior written permission. For written permission,
please contact apache@apache.org.

5. Products derived from this software may not be called "Apache", nor may "Apache" appear in their
name, without prior written permission of the Apache Software Foundation.

THIS SOFTWARE IS PROVIDED "AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

This software consists of voluntary contributions made by many individuals on behalf of the Apache
Software Foundation and was originally based on software copyright (c) 1999, International Business
Machines, Inc., http://www.ibm.com. For more information on the Apache Software Foundation, please
see http://www.apache.org/.

DataDirect Copyright Disclosure

Portions of this software are copyrighted by DataDirect Technologies Corp., 1991 -
2008.

Expat Copyright Disclosure

Part of the software embedded in this product is Expat software.

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT

ii DataFlux dfPower Studio

mailto:apache@apache.org
http://www.apache.org/

OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

gSOAP Copyright Disclosure

Part of the software embedded in this product is gSOAP software.

Portions created by gSOAP are Copyright (C) 2001-2004 Robert A. van Engelen, Genivia inc. All Rights
Reserved.

THE SOFTWARE IN THIS PRODUCT WAS IN PART PROVIDED BY GENIVIA INC AND ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

IBM Copyright Disclosure

ICU License - ICU 1.8.1 and later [used in dfPower Studio, DataFlux Integration Server, Profile, and
Monitor]

COPYRIGHT AND PERMISSION NOTICE

Copyright (c) 1995-2005 International Business Machines Corporation and others. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so, provided that the above
copyright notice(s) and this permission notice appear in all copies of the Software and that both the above
copyright notice(s) and this permission notice appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authorization of
the copyright holder.

Microsoft Copyright Disclosure

Microsoft®, Windows, NT, SQL Server, and Access, are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

Oracle Copyright Disclosure

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates.

PCRE Copyright Disclosure

A modified version of the open source software PCRE library package, written by Philip Hazel and
copyrighted by the University of Cambridge, England, has been used by DataFlux for regular expression
support. More information on this library can be found at:
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/.

Copyright (c) 1997-2005 University of Cambridge. All rights reserved.

DataFlux dfPower Studio iii

Redistribution and use in source and binary forms, with or without modification, are permitted provided
that the following conditions are met:

• Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

• Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

• Neither the name of the University of Cambridge nor the name of Google Inc. nor the names of
their contributors may be used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Red Hat Copyright Disclosure

Red Hat® Enterprise Linux®, and Red Hat Fedora™ are registered trademarks of Red Hat, Inc. in the
United States and other countries.

SAS Copyright Disclosure

Portions of this software and documentation are copyrighted by SAS® Institute Inc.,
Cary, NC, USA, 2009. All Rights Reserved.

SQLite Copyright Disclosure

The original author of SQLite has dedicated the code to the public domain. Anyone is free to copy, modify,
publish, use, compile, sell, or distribute the original SQLite code, either in source code form or as a
compiled binary, for any purpose, commercial or non-commercial, and by any means.

Sun Microsystems Copyright Disclosure

Java™ is a trademark of Sun Microsystems, Inc. in the U.S. or other countries.

Tele Atlas North American Copyright Disclosure

Portions © 2006 Tele Atlas North American, Inc. All rights reserved. This material is proprietary and the
subject of copyright protection and other intellectual property rights owned by or licensed to Tele Atlas
North America, Inc. The use of this material is subject to the terms of a license agreement. You will be
held liable for any unauthorized copying or disclosure of this material.

USPS Copyright Disclosure

National ZIP®, ZIP+4®, Delivery Point Barcode Information, DPV, RDI. © United States Postal Service
2005. ZIP Code® and ZIP+4® are registered trademarks of the U.S. Postal Service.

DataFlux holds a non-exclusive license from the United States Postal Service to publish and sell USPS
CASS, DPV, and RDI information. This information is confidential and proprietary to the United States
Postal Service. The price of these products is neither established, controlled, or approved by the United
States Postal Service.

iv DataFlux dfPower Studio

Table of Contents
Introduction .. 1

Conventions Used In This Document .. 1

DataFlux Reference Publications .. 1

dfPower Studio Getting Started Guide ... 3

Installing dfPower Studio .. 4

System Requirements .. 4

Supported Databases ... 4

Supported Databases for Creating Repositories .. 5

Before You Upgrade ... 6

Installation Wizard .. 7

Command-Line Switches .. 9

Installing Enrichment Data ... 10

Installing Data Packs .. 10

Downloading and Installing Data Packs .. 10

Installing Supplemental Language Support ... 12

Configuring dfPower Studio to Use the Java Plugin .. 12

Configuring dfPower Studio .. 14

Licensing dfPower Studio ... 14

Annual Licensing Notification .. 15

Fine-Tuning Performance .. 16

dfPower Studio Settings .. 16

Database and Connectivity Issues ... 20

Quality Knowledge Base Issues .. 21

Introduction to dfPower Studio ... 22

Overview .. 22

DataFlux dfPower Studio v

vi DataFlux dfPower Studio

Navigator .. 22

AIC Process and Five Steps to More Valuable Enterprise Data 23

dfPower Studio – Base .. 24

dfPower Studio - Profile ... 25

dfPower Studio - Integration .. 26

dfPower Studio - Design .. 27

dfPower Studio - Other Tools ... 28

Sample Data Management Scenario .. 30

Profiling .. 30

Quality ... 38

Integration .. 42

Enrichment .. 47

Monitoring ... 50

Technical Support ... 53

Frequently Asked Questions ... 53

Error Messages .. 54

Appendix ... 55

Appendix A: dfPower Architect Configuration Directives 55

Appendix B: dfPower Data Access Component Directives 58

Glossary .. 62

Introduction
This section provides basic information about the dfPower Studio product and
documentation.

Conventions Used in this Document

DataFlux References

Conventions Used In This Document
This document uses several conventions for special terms and actions.

Typographical Conventions

The following typographical conventions are used in this document:

Convention Description

Bold Text in bold signifies a button or action

italic Identifies document and topic titles

monospace Typeface used to indicate examples of code

Syntax Conventions

The following syntax conventions are used in this document:

Syntax Description

[] Brackets [] are used to indicate variable text, such as version numbers

The pound # sign at the beginning of example code indicates a comment that is not
part of the code

DataFlux Reference Publications
This document may reference other DataFlux publications, including:

• DataFlux dfPower Studio Online Help

• DataFlux Integration Server Administrator's Guide

• DataFlux Integration Server User's Guide

DataFlux dfPower Studio 1

• DataFlux Expression Language Reference Guide

• DataFlux Quality Knowledge Base Online Help

2 DataFlux dfPower Studio

dfPower Studio Getting Started
Guide
DataFlux dfPower® Studio (dfPower) is a powerful, easy-to-use suite of data cleansing and
data integration software applications. dfPower connects to virtually any data source. Any
dfPower Studio user, in any department can use dfPower to profile, cleanse, integrate,
enrich, monitor, and otherwise improve data quality throughout the enterprise. dfPower
Architect, an innovative job flow builder, allows users to build complex management
workflows quickly and logically.

This capability allows frontline staff—not IT or development resources—to discover and
address data problems, merge customer and prospect databases, verify and complete
address information, transform and standardize product codes, and perform other data
management processes required by your organization.

DataFlux dfPower Studio 3

Installing dfPower Studio
This chapter describes how to install dfPower® Studio.

Topics in this chapter include:

Before You Upgrade

System Requirements

Supported Databases

Installation Wizard

Command-Line Switches

System Requirements

Requirement Minimum Recommended

Platforms Microsoft Windows 2003; Windows XP;
Windows Vista; or Windows 7

Microsoft Windows XP
Professional

Processor Intel® Pentium® 4 - 1.2 GHz or higher Intel Pentium 4 - 2.2 GHz or
higher

Memory (RAM) 512 MB 2+ GB

Disk Space 5 GB 10+ GB

Supported Databases
The following databases are supported with dfPower Studio.

Database Driver

ASCII Text Files TextFile

Pervasive® Btrieve® 6.15 Btrieve

Clipper dBASE File

DB2 Universal Database (UDB) v7.x, v8.1, and v8.2 for Linux,
UNIX, and Windows

DB2 Wire Protocol

DB2 UDB v7.x and v8.1 for z/OS DB2 Wire Protocol

DB2 UDB V5R1, V5R2, and V5R3 for iSeries DB2 Wire Protocol

dBASE® IV, V dBASE

Microsoft Excel® Workbook 5.1, 7.0 Excel

FoxPro 2.5, 2.6, 3.0 dBase

FoxPro 6.0 (with 3.0 functionality only) dBase

FoxPro 3.0 Database Container dBase

4 DataFlux dfPower Studio

Database Driver

IBM Informix® Dynamic Server 9.2x, 9.3x, and 9.4x Informix

IBM Informix Dynamic Server 9.2x, 9.3x, and 9.4x Informix Wire Protocol

Microsoft SQL Server 6.5 SQL Server

Microsoft SQL Server 7.0 SQL Server Wire Protocol

Microsoft SQL Server 2000 (including SP 1, 2, 3 and 3a) SQL Server Wire Protocol

Microsoft SQL Server 2000 Desktop Engine (MSDE 2000) SQL Server Wire Protocol

Microsoft SQL Server 2000 Enterprise (64-bit) SQL Server Wire Protocol

Microsoft SQL Server 2005 SQL Server Wire Protocol

Oracle® 8.0.5+ Oracle

Oracle 8i R1, R2, R3 (8.1.5, 8.1.6,8.1.7) Oracle

Oracle 9i R1, R2 (9.0.1, 9.2) Oracle

Oracle 10g R1 (10.1) Oracle

Oracle 8i R2, R3 (8.1.6, 8.1.7) Oracle Wire Protocol

Oracle 9i R1 and R2 (9.0.1 and 9.2) Oracle Wire Protocol

Oracle 10g R1 (10.1) Oracle Wire Protocol

Corel® Paradox® 4, 5, 7, 8, 9, and 10 ParadoxFile

Pervasive PSQL® 7.0, 2000 Btrieve

Progress® OpenEdge® Release 10.0B Progress OpenEdge

Progress 9.1D, 9.1 E Progress SQL92

Sybase® Adaptive Server® 11.5 and higher Sybase Wire Protocol

Sybase Adaptive Server Enterprise 12.0, 12.5, 12.5.1, 12.5.2 and
12.5.3

Sybase Wire Protocol

XML XML

 Note: This is a consolidated list of the drivers available for Windows,
Linux, and various UNIX platforms. Please consult with DataFlux® for the
complete and updated database version and platform support list prior to
initiation of your project.

There is a separate list of databases that support the creation of DataFlux Repositories.
Refer to the dfPower Studio Online Help for a detailed list of databases and versions.

Supported Databases for Creating
Repositories
The following databases support the creation of DataFlux repositories:

Database

DB2 Universal Database (UDB) v7.x, v8.1, and v8.2 for Linux, UNIX, and Windows

DB2 UDB v7.x and v8.1 for z/OS

DataFlux dfPower Studio 5

Database

DB2 UDB V5R1, V5R2, and V5R3 for iSeries

IBM Informix® Dynamic Server 9.2x, 9.3x, and 9.4x

IBM Informix Dynamic Server 9.2x, 9.3x, and 9.4x

Microsoft® SQL Server 6.5

Microsoft SQL Server 7.0

Microsoft SQL Server 2000 (including SP 1, 2, 3 and 3a)

Microsoft SQL Server 2000 Desktop Engine (MSDE 2000)

Microsoft SQL Server 2000 Enterprise (64-bit)

Microsoft SQL Server 2005

Oracle® 8.0.5+ Oracle 8i R1, R2, R3 (8.1.5, 8.1.6,8.1.7)

Oracle 9i R1, R2 (9.0.1, 9.2)

Oracle 10g R1 (10.1)

Oracle 8i R2, R3 (8.1.6, 8.1.7)

Oracle 9i R1 and R2 (9.0.1 and 9.2)

Oracle 10g R1 (10.1)

Sybase® Adaptive Server® 11.5 and higher

Sybase Adaptive Server Enterprise 12.0, 12.5, 12.5.1, 12.5.2 and 12.5.3

Teradata® 12.0

 Note: Due to locking issues, file-based and Microsoft® Access based
repositories are not recommended.

Before You Upgrade
You do not need to uninstall a previous version of dfPower Studio before you install a new
version. By default, new versions install into a separate directory indicated by the version
number. Install the new version into a new directory, allowing both the older and the newer
versions to operate side by side. Uninstalling dfPower Studio first might delete some of the
ODBC drivers you are currently using but have been discontinued in the upgraded software
installation.

Action: Create backup copies of your personal resource files, such as jobs and
reports that are displayed in the dfPower Studio Navigator.

 Note: These files are stored by default in the \Program
Files\DataFlux\dfPower Studio\8.2.1\mgmtrsrc directory.

Action: Make a backup copy of your Quality Knowledge Base (QKB) prior to
installing a new QKB.

Note: By default, the QKB location is \Program Files\DataFlux\QltyKB. If
you choose to install the latest QKB, you can install it into a new directory.
Click Options > QKB Directory in dfPower Studio and enter the new

6 DataFlux dfPower Studio

location. Alternatively, you can install it into a new directory and use dfPower
Customize and the import features of dfPower Studio to selectively import
portions of the updated QKB. A third option is to install the new QKB directly
into an existing QKB location. The installation has merge functionality that
incorporates the updates from DataFlux® into your existing QKB while
keeping any changes you have made.

Starting with version 7, the QKB format for storing metadata changed. This change could
cause problems during your installation unless a few steps are taken to accommodate the
change. Here are a few scenarios:

1. If you install dfPower Studio version 8.2 Service Pack 1 on a machine that has version
6.2 or earlier installed and QKB version 2004D or earlier already installed, the
installation process converts the version 6.2 metadata file so it is compatible with
version 8.2.1.

2. If you install dfPower Studio version 8.2.1 on a new machine, and then install QKB
version 2004D or earlier, you must run a conversion program that converts QKB
version 2004D so it can use the new metadata file format. To do this, use the
vault_merge.exe application in the root directory of your QKB. Launch it from the
command line and use the following syntax:

vault_merge --convert <new file> <old file>

For example:

vault_merge --convert "C:\Program Files\DataFlux\QltyKB\2004D\qltykb.db"
"C:\Program Files\DataFlux\QltyKB\2004D\qltykb.xml"

 Note: You will be required to update your repositories to 8.2.1 in order to
use dfPower Explorer.

A QKB is not delivered in the same installation as dfPower Studio. You can use an existing
Quality Knowledge Base or you can install the most recent version of the Quality Knowledge
Base, available at www.dataflux.com/qkb/. If you do choose to download the latest QKB
version, install it after you install dfPower Studio.

 Note: If you have an earlier version of dfPower Studio, you will be able to
load the new QKB files, but will not be able to save changes without
upgrading. You will be warned if you attempt to save an older QKB file. A
pop-up explains that the save operation will convert the file to a new format
that will not be readable in earlier versions of dfPower Studio.

Installation Wizard
Use the following procedure to install your copy of dfPower Studio using the installation
wizard.

 Note: This procedure is designed for Windows users. Non-Windows users
should refer to dfPower Studio Installation command-line switches.

DataFlux dfPower Studio 7

http://www.dataflux.com/qkb

1. Insert the dfPower Studio CD into your computer's CD drive. A screen appears that
offers several options. Select Install dfPower Studio 8.2.1.

2. From the Windows task bar, click Start > Run. The Run dialog appears.

3. In the Open dialog, type [your_drive]:\dfPowerStudio.exe, replacing
[your_drive] with the letter for your CD drive. For example, if your CD drive letter is
E, type e:\dfPowerStudio.exe.

4. Click Enter. The setup wizard begins. The first screen offers a general welcome. Click
Next to continue.

 Note: You can also start dfPower Studio by navigating to and
double-clicking the dfPowerStudio.exe file on the dfPower Studio CD.

5. The Choose Destination Location dialog appears. Specify the directory where you
want to install dfPower Studio. We suggest you use the default directory. Do not
install a new version of dfPower Studio into an older version's directory. For example,
do not install version 8.2.1 into an existing 7.1 directory. However, if you need to, you
can re-install the same version of dfPower Studio into the same directory. Click Next
to continue.

6. The Copy Resources dialog appears, as shown in the following illustration. If you
have a previously installed version of dfPower Studio on your computer, you can make
all of your existing reports and jobs available to the new version of dfPower Studio.

 Note: Reports created with dfPower Match version 7.0.3 or earlier
are not included in this process.

Click Next to continue.

7. The dfPower Studio License Agreement dialog appears. Use this control to review
and accept the software license agreement. Click Accept to continue.

8. The Select Program Manager Group dialog appears. Specify the name for the
Program Manager group that is added to the Windows Start menu. By default, the
group is named DataFlux dfPower Studio 8.2.1. Click Next to continue.

9. Select your licensing method and location. You may accept the default settings and
enter your licensing information later using the License Manager application. Click
Next to continue and Next again to begin the install. More information on licensing is
available under Configuring dfPower Studio - Licensing dfPower Studio.

10. Click the checkbox marked View Release Notes if you would like to review the
release notes when the installation has completed. Click Finish when the installation
wizard completes. Check for any available dfPower Studio patches or updates,
available at http://www.dataflux.com/Resources/DataFlux-Resources/Customer-Care-
Portal/Downloads.aspx.

8 DataFlux dfPower Studio

http://www.dataflux.com/Resources/DataFlux-Resources/Customer-Care-Portal/Downloads.aspx
http://www.dataflux.com/Resources/DataFlux-Resources/Customer-Care-Portal/Downloads.aspx

Command-Line Switches
The dfPower Studio installation command-line switches allow you to modify the way dfPower
Studio installs:

Command Description

/S Install dfPower Studio in silent mode. Use this switch in
conjunction with the /M switch described below.

/M=<filename> Use installation variables from an external text file. The
available variables are:

MAINDIR=<path> Specify the dfPower Studio installation location.

COMPONENTS=[A][B][C][D] Specify the dfPower Studio applications components to install.
A= dfPower Verify
B= dfPower Match
C= dfPower Customize
D= dfPower Profile

RUNMDAC=[YES/NO] Specify if you want to install MDAC (Microsoft Data Access
Components).

RUNCONVWIZ=[YES/NO] Specify if you want to run the Conversion Wizard Utility. The
conversion wizard changes dfPower Studio version 4.x-style
jobs into version 5.x/6.x-style jobs.

 Note: Specifying YES brings up a related
dialog during installation.

RUNSASODBC=[YES/NO] Specify if you want to install the SAS ODBC driver.

RUNODBC=[YES/NO] Specify if you want to install DataFlux ODBC Drivers.

 Note: This variable also specifies if you want
to install the sample DataFlux database. If you
do not install this database, none of the sample
jobs set up in dfPower Studio will work correctly.

Sample installation command line:

dfPowerStudio.exe /S /M=dfinst.txt

where dfinst.txt contains the following text:

MAINDIR=C:\Program Files\DataFlux\dfPowerStudio\8.2.1
COMPONENTS=ABCD
RUNMDAC=NO
RUNCONVWIZ=NO
RUNSASODBC=NO

DataFlux dfPower Studio 9

Installing Enrichment Data
This section provides information about how to install enrichment data (data packs) for
dfPower Studio.

Enrichment Data

Supplemental Language Support

Java Pluggin

Installing Data Packs
You can use external data from the United States Postal Service (USPS), Canada Post
(SERP), QuickAddress Software (QAS), AddressDoctor, Tele Atlas, and more.

If you use external data, install the data using the instructions provided by the appropriate
vendor but make a note of the path to each data source. You will need this information to
properly configure dfPower Studio.

 Important: Do not attempt to install USPS or SERP data older than June
2007 or Geo+Phone data older than Summer 2007 on a machine where
dfPower Studio 8.2 SP 1 is installed. Earlier versions attempt to update the
architect.cfg file directly, which causes the installation to hang because the
architect.cfg file is in Unicode format. The latest installations call out to a
program that updates the architect.cfg file and can handle the Unicode
format.

• Data Packs

• USPS

• SERP

• QAS

• AddressDoctor

• Geocode

Downloading and Installing Data Packs
Data Packs for data enrichment are available for download on the DataFlux Customer Care
Portal. To download data packs, follow these steps:

1. Obtain a user name and password from your DataFlux representative.

2. Log in to the DataFlux Customer Portal at
http://www.dataflux.com/Resources/DataFlux-Resources/Customer-Care-Portal.aspx.

10 DataFlux dfPower Studio

http://www.dataflux.com/Resources/DataFlux-Resources/Customer-Care-Portal.aspx

3. Click Downloads > Data Updates.

4. Select the installation file corresponding to your data pack and operating system to
download.

5. Close all other Microsoft® Windows® applications.

6. Browse to and double-click the installation file to begin the installation wizard.

If you are installing QAS data, you must enter a license key. When the wizard prompts you
for a license key, enter your key for the locale you are installing.

 Note: Download links are also available from the dfPower Navigator
Customer Portal link in dfPower Studio.

USPS

The USPS Coding Accuracy Support System (CASS) data is available for download from the
DataFlux Customer Care Portal.

Select the appropriate platform and data type for your enterprise. You can choose from
Verify Data, Verify DPV Data, LACS Data, or eLOT Data. Follow the instructions provided
throughout the download process.

 Note: All USPS data must be installed in the same directory. Make sure
you make a note of the path to your USPS data source.

SERP

Canada Post's Software Evaluation and Recognition Program (SERP) data is available for
download from the DataFlux Customer Care Portal.

Select the appropriate platform for your enterprise and follow the instructions provided
throughout the download process.

 Note: Make sure you make a note of the path to your SERP data source.

QAS

If you are licensed to use QAS, you must acquire the postal reference databases directly
from QAS for the countries they support. For more information, contact your DataFlux
representative.

Also, refer to the QuickAddress Batch API Guide under Documentation on the DataFlux
Customer Care Portal.

AddressDoctor (World Address Verification)

For World address verification, you can select one or more country data to download. Go to
the DataFlux Customer Care Portal to view the list of countries.

DataFlux dfPower Studio 11

Select the country data you want to download and follow the instructions provided
throughout the download process.

 Note: Make sure you make a note of the path to your World data source.

Geocode

Geocode data includes US and Canada Geocode and Phone data, Tele Atlas Zip +6 (roof top
data), and Tele Atlas Zip +4.

Select the appropriate data and platform for your enterprise and follow the instructions
provided throughout the download process.

 Note: Make sure you make a note of the path to your data source.

Installing Supplemental Language Support
If you plan to use dfPower Studio for data that includes East Asian languages or right-to-left
languages, you must install additional language support. To install these packages:

1. Click Start > Settings > Control Panel.

2. Double-click Regional and Language Options.

3. In the Regional and Language Options dialog, select the Languages tab. Under
Supplemental Language Support, check the boxes marked Install files for
complex script and right-to-left languages (including Thai) and Install files
for East Asian languages.

4. The Windows installer guides you through the installation of these languages
packages.

Configuring dfPower Studio to Use the Java
Plugin
dfPower Studio or DataFlux Integration Server (DIS) must be properly configured to run
jobs containing the dfPower Architect Java™ Plugin node. The following sections explain the
requirements for configuring the setup.

Java Runtime Environment

The primary requirement is that the Java runtime environment must be installed on the
machine. The Java Plugin currently supports the Sun™ Java runtime environment (JRE™)
version 1.4.2 or later. The actual location of install installation is not important as long as
the dfPower Architect or DIS process can read the files in the installation. The architect.cfg
file should contain a setting called JAVA/VMLIB that references the location of the Java
Virtual Machine JVM™ DLL (or shared library on UNIX variants). In the Sun JRE, the location
of this file is typically:

[JRE install directory]/bin/server/jvm.dll

12 DataFlux dfPower Studio

A typical setting in the architect.cfg file on a Microsoft Windows machine might be:

JAVA/VMLIB=C\jrel.4.2\bin\server\jvm.dll

If this setting is not configured properly when a job using the Java Plugin runs, you will
receive an error that the JVM could not be loaded. Also your Java code must be compiled
using a Java Development Kit (JDK™) of the same version or earlier than the JRE version
you plan to use to run your job. For example, compiling your code using JDK 1.5 or later
and running the code in the Java Plugin using JRE 1.4.2 generates an error that the class
file format is incorrect.

For more information, see DataFlux dfPower Studio Online Help, Architect - Java Plugin.

DataFlux dfPower Studio 13

Configuring dfPower Studio
This chapter describes how to configure your new dfPower® Studio installation. Topics
include:

Licensing dfPower Studio

Downloading and Installing Data Packs

Installing Supplemental Language Support

Configuring dfPower Studio to Use the Java™ Plugin

Licensing dfPower Studio
The dfPower Studio licensing model uses a License Manager to manage specific licenses
over concurrent dfPower instances.

The following is a list of supported platforms for a license server installation:

Platform

AIX® 64-bit - Power PC™ RS/6000®

HP-UX® 64-bit - HP 64-bit

HP-UX 64-bit - Intel® Itanium®

Microsoft® Windows® 32-bit - x86

Red Hat® Enterprise Linux 32-bit - x86 / AMD Opteron™

Red Hat Enterprise Linux 64-bit - Intel Xeon™ / AMD Opteron

Solaris™ 64-bit - SPARC® 64-bit

Solaris 64-bit - AMD Opteron

SUSE® Linux Enterprise Server 32-bit - x86 / AMD Opteron

SUSE Linux Enterprise Server 64-bit - Intel Xeon / AMD Opteron

To install the License Server Manager:

1. Download the License Manager from http://www.dataflux.com/Resources/DataFlux-
Resources/Customer-Care-Portal/Downloads.aspx.

2. Install the License Manager on your license server by double-clicking the installation
package and following the instructions.

3. Run the lmhostid command, which generates a machine code.

4. Email the machine code to your DataFlux® representative.

14 DataFlux dfPower Studio

http://www.dataflux.com/Resources/DataFlux-Resources/Customer-Care-Portal/Downloads.aspx
http://www.dataflux.com/Resources/DataFlux-Resources/Customer-Care-Portal/Downloads.aspx

5. Obtain the license file from your DataFlux representative. In Windows, save the
license file to your dfPower license directory. In UNIX, save the file to the etc
directory.

6. Start the license server.

You can specify the licensing file or server by using the DataFlux License Manager during
the dfPower Studio installation or by launching the License Manager after installation is
complete.

To specify licensing location using the License Manager, click Start > Programs
> DataFlux dfPower Studio 8.2 > License Manager. In the License Manager dialog,
select the Licensing Method and enter the Location of your license server or file.

DataFlux License Manager

Annual Licensing Notification
DataFlux products have an annual license model that allow users to access services and run
jobs. The system keeps track of the expiration dates for each feature, and a notice alerts
users to the impending license expiration using the following process:

1. Sixty days prior to license expiration, a dialog begins appearing daily in dfPower
Navigator. The dialog contains a list of the licensed features set to expire, as well as
the number of days left for each license. You can select Do not display this warning
again to disable the warning after it appears at least one time.

2. When the first licensed feature reaches the expiration date, another dialog displays
daily, alerting the user that one or more features have expired and these features are
now operating within a thirty-day grace period. The list displays the number of days
remaining for each feature (or if the license has expired and no longer accesses the
product). This notice cannot be disabled.

3. After the thirty-day grace period, services or jobs requested through dfPower
Navigator, but have expired, no longer run.

The server log keeps records of all notification warnings generated.

Contact your DataFlux sales representative to renew your DataFlux product license(s).

DataFlux dfPower Studio 15

Fine-Tuning Performance
There are many settings, environment variables, and associated database and system
settings that can significantly impact the performance of dfPower® Studio. Aside from
normal issues regarding data processing that stem from user hardware and operating-
system capabilities, dfPower Studio's performance can benefit either from directly modifying
settings within dfPower Studio or from modifying the data source on which dfPower Studio is
working.

These modifications can range from the amount of memory used to sort records, to the
complexity of the parse definition selected for data processing, to the number and size of
columns in a database table. This chapter describes some of the more common ways that
you can optimize dfPower Studio for performance.

Topics in this chapter include:

dfPower Studio Settings

Database and Connectivity Issues

Quality Knowledge Base Issues

dfPower Studio Settings
Several dfPower Studio environment settings permit access through the various dfPower
Studio applications you use to process your data. Currently, a few of the settings can only
be changed by directly editing the HKEY_CURRENT USER and HKEY_LOCAL_MACHINE keys
in the registry. The registry contains many of the user-defined options and system path
relationships used by dfPower Studio.

 Caution: Edit the registry with care. Unwarranted changes can corrupt
your dfPower Studio installation, causing it to perform unexpectedly or fail to
initialize.

dfPower Studio (All Applications)

Working Directory Settings: Most dfPower Studio applications use a working directory to
create temporary files and save miscellaneous log files. Some processes, such as multi-
condition matching, can create very large temporary files depending on the number of
records and conditions being processed. To speed processing, the working directory should
be a local drive with plenty of physical space to handle large temporary files. Normal hard
drive performance issues apply, so a faster hard drive is advantageous, as is keeping the
drive defragmented. To change the working directory from the dfPower Studio main screen,
double-click dfPower Settings on the left-hand panel, and change the path in the
Working Directory dialog.

dfPower Base – Architect

• Memory Allocated for Sorting and Joining: Architect has an option—Amount of
memory to use during sorting operations—for allocating the amount of memory

16 DataFlux dfPower Studio

used for sorting. Access this option from the Architect main screen by clicking Tools >
Options then selecting the Step Specific tab. The number for this option indicates
the amount of memory Architect uses for sorting and joining operations. This number
is represented in megabytes, and the default is 64MB. Increasing this number allows
more memory to be used for these types of procedures, and can improve performance
substantially if your computer has the RAM available. As a rule, if you only have one
join or sort step in a Architect job flow, you should not to set this number greater than
half the total available memory. If you have multiple uses of sorts and joins, divide
this number by the number of sorts or joins in the job flow.

• Caching the USPS Reference Database: Architect has an option—Percentage of
cached USPS data indexes—for how much United States Postal Service data your
computer should store in memory. You can access this option from the Architect main
screen by clicking Tools > Options and selecting the Step Specific tab. The number
for this option indicates an approximate percentage of how much of the USPS
reference data set will be cached in memory prior to an address verification
procedure. The default setting is 20. The range is from 0, which indicates that only
some index information is cached into memory, to 100, which directs that all of the
indices and normalization information (approximately 200MB) be cached in memory.
You may also choose to cache all of the USPS reference data by selecting the Load all
USPS data into memory (requires approximately 1 GB of free memory) check.

• Sort by ZIP Codes: For up to about 100,000 records, sorting records containing
address data by postal code prior to the address verification process will enhance
performance. This has to do with the way address information is searched for in the
reference database. If you use Architect to verify addresses, this step can be done
inside the application; otherwise, it must be done in the database's system. For over
100,000 records, it might be faster to use the SQL Query step in Architect, write a
SQL statement that sorts records by ZIP, and let the database do the work.

• New Table Creation vs. Table Updates: When using Architect, it is faster to create
a new table as an output step rather than attempting to update existing tables. If you
choose to update an existing table, set your commit interval on the output step to an
explicit value (for example, 500) instead of choosing Commit every row.

• Clustering Performance in Version 7.0 and Higher: To take advantage of
performance enhancements to the clustering engine that provides the functionality for
the Clustering job step in Architect:

• Try to have as much RAM as possible on your computer, preferably 4GB. If
more than 3GB of RAM is installed, the Microsoft® Windows® boot.ini system
file needs a special switch to instruct Windows to allow a user process to take up
to 3GB. Otherwise, Windows automatically reserves 2GB of RAM for itself. To
add this special switch, add /3GB to the Windows boot.ini file.

Note: This setting is not supported on all Windows versions.
For more information on making this change and for supported
versions, see
http://www.microsoft.com/whdc/system/platform/server/PAE/PAE
mem.mspx.

• Terminate all non-essential processes to free up memory resources.

DataFlux dfPower Studio 17

http://www.microsoft.com/whdc/system/platform/server/PAE/PAEmem.mspx
http://www.microsoft.com/whdc/system/platform/server/PAE/PAEmem.mspx

• Set the Sort Bytes memory allocation parameter close to 75–80% of total
physical RAM. If the data set is rather small, this might not be as important, but
when clustering millions of records, using more memory dramatically improves
performance. Do not exceed 80–85% because higher memory allocation might
result in memory thrashing, which dramatically decreases clustering
performance.

• Defragment the hard drive used for temporary cluster engine files. This is the
dfPower Studio working directory described earlier.

• Use the fastest hard drive for cluster engine temporary files. If possible, set the
dfPower Studio working directory to be on the fastest physical drive that is not
the drive for the operating system or page file.

• Defragment the page file disk. Do this by setting the Windows Virtual Memory
size to 0, then rebooting the system and defragmenting the drive.

• Manually set both minimum and the maximum values of the Windows Virtual
Memory file size to the same large value. Preferably, this is 2GB or more,
depending on disk space available. This prevents the operating system from
running out of virtual memory, and prevents the operating system from needing
to resize the file dynamically.

• Disable Fast User Switching in Windows XP. This frees up space in the page file.

• Limit Data Passed Through Each Step: While it might be convenient to use the
Architect setting that passes every output field by default to the next step, this
creates a large amount of overhead when you are only processing a few fields.
Passing only 10 fields through each step might not be that memory intensive, but
when it is 110 fields, performance can suffer. After you create your job flow with the
Output Fields setting on All, go through each job step and delete the additional output
fields you do not need.

• Large Decimal Support in the Cluster Update Node: If you are connected only to
Oracle, dfPower treats NUMBER(38) columns as an INTEGER. To override this
functionality and treat the columns as REAL, you must set the Oracle NUMBER (38)
handling in the registry (on Windows) and the dsn configuration file (on UNIX).

• Windows - For Windows, create a key in the HKEY_CURRENT_USER or
HKEY_LOCAL_MACHINE section of the registry under SOFTWARE\DataFlux
Corporation\dac\[version] with the exact name as your DSN. Under this key,
create a DWORD value called oranum38real and set it to 1.

• UNIX - For UNIX, open (or create) the file called dsn.cfg in a .dfpower sub-
directory of your home directory ($HOME/.dfpower/dsn.cfg). Create a line with
the exact name of your DSN followed by = oranum38real. If the DSN line
already exists, add oranum38real as a new word at the end of the line.

18 DataFlux dfPower Studio

dfPower Integration – Match

• Multiple Condition Matching: The number of match conditions, in addition to the
number of fields you choose to use as match criteria, will impact performance
significantly. A match job of a 100,000 records that uses four conditions with four
fields for each condition might take hours to complete, while a match job of 100,000
records with a single condition and six fields might complete in minutes.

• Generate Cluster Data Mode: See Clustering Performance in Version 7.0 and Higher
in DataFlux® dfPower Studio Online Help.

dfPower Profile – Configurator

• Metric Calculation Options: On the dfPower Profile – Configurator main screen,
choose Job > Options to access settings that can directly affect the performance of a
Profile job process. Two of these settings are Count all rows for frequency
distribution and Count all rows for pattern distribution. By default, all values are
examined to determine metrics that are garnered from frequency and pattern
distributions. You can decrease processing time by setting a limit on the number of
accumulated values. The tradeoff is that you might not get a complete assessment of
the true nature of your data.

• Subset the Data: You can explicitly specify which metrics to run for each field in a
table. If certain metrics do not apply to certain kinds of data, or if you only want to
examine select fields of large tables, be sure to manually change the list of metrics to
be run for each field. Incidentally, the biggest performance loss is generating a
frequency distribution on unique or almost-unique columns. Thus, if you know a field
to be mostly unique, you might choose not to perform metrics that use frequency
distribution. For numeric fields, these metrics are Percentile and Median. For all fields,
these metrics are Primary Key Candidate, Mode, Unique Count, and Unique
Percentage. You can also subset the data by creating a business rule or SQL query
that can pare down the data to only the elements you want to profile.

• Sample the Data: dfPower Profile allows you to specify a sample interval on tables
that you want to profile. This feature improves performance at the expense of
accuracy, but for very large tables with mostly similar data elements, this might be a
good option.

• Memory Allocated for Frequency Distribution: dfPower Profile allows you to
manually configure the amount of memory being allocated per table column to the
Frequency Distribution Engine (FRED). By default FRED allocates 256 KB (512 KB for
64-bit) per column being profiled. This amount (the number of columns * the amount
specified per column) is subtracted from the total amount configured by the user in
the Job > Options menu of dfPower Profile Configurator (Frequency Distribution
memory cache size). The amount of memory remaining in the available pool is used
for other data operations.

For performance reasons the amount of table memory should always be a power of 2.
Setting this value to 1 MB (NOTE: 1 MB = 1024 * 1024 bytes, not 1000 * 1000 bytes)
yields optimal performance. Setting it to a value larger than 1 MB (always a power of
2) may help slightly with processing very large data sets (dozens of millions), but
could actually reduce performance for data sets with just a few million rows or less. If

DataFlux dfPower Studio 19

you set the amount of table memory too high you may not be able to run your job
because it will not be able to initialize enough memory from the available pool.

Database and Connectivity Issues
There are certain issues related to the way databases are physically described and built that
can impact the overall performance of dfPower Studio applications. These issues are
generally common to all relational database systems. With just a few exceptions, database
changes to enhance performance take place internal to dfPower Studio applications.

dfPower Architect

• Commit Interval: Architect commit settings are controlled on a per-job basis. The
Data Target (Update) and Data Target (Insert) job steps both have commit
options. The default value is Commit every row, which commits every change to the
database table one record at a time. You can instead select Commit every N rows
and set this number to somewhere between 10 and 500, or Commit all rows in a
single transaction. This should increase performance, but on the remote chance
there is a problem during processing, all the data changes made by Architect
ultimately might not be saved to the source table.

 dfPower Profile – Configurator

• Commit Interval: Profile commit settings are also controlled on a per-job basis. After
selecting your job, click Tools > Options and click on the General tab. At the
bottom, you will find the Commit section. The default value is Commit all rows in a
single transaction, which helps Profile jobs to run quickly. Note that if there is a
problem during processing, data changes made by Profile might not be saved. You can
also choose Commit every N rows and set this number to somewhere between 10
and 500, or Commit every row.

Database

• ODBC Logging: Use the Microsoft Windows ODBC Administrator to turn off ODBC
Tracing. ODBC Tracing can dramatically decrease performance.

• Using Primary Keys: For many dfPower Studio processes, using primary keys will
enhance performance only if constructed correctly. Primary keys should be numeric,
unique, and indexed. You cannot currently use composite keys to enhance
performance.

• Database Reads and Writes: All dfPower Studio processes read data from
databases, but only some of them write data back. Processes that only read from a
database, such as match reports, run quickly. However, if you choose to flag duplicate
records in the same table using the same criteria as the match report, the processing
time will greatly increase. Using correctly constructed primary keys will help. In
addition, as a general rule, smaller field sizes will enhance performance. A table where
all fields are set to a length of 255 by default will be processed more slowly than a
table that has more reasonable lengths for each field, such as 20 for a name field and
40 for an address field.

20 DataFlux dfPower Studio

• Turn Off Virus Protection Software: Some virus-scanning applications such as
McAfee® NetShield 4.5 cause processing times to increase substantially. While you
might not want to turn off your virus-scanning software completely, you might be able
to change some settings to ensure that the software is not harming performance by
doing things such as scanning for local database changes.

Quality Knowledge Base Issues
The Quality Knowledge Base (QKB) is the set of file and file relationships that dictates how
all DataFlux applications parse, standardize, match, and otherwise process data. The QKB
uses several file types and libraries that work with each other to provide expected outputs.
A few of the file types are used in ways that do not simply employ direct data look-ups, and
it is these types of files that require a certain degree of optimization to ensure that DataFlux
applications are processing data as efficiently as possible.

• Complex Parsing: Processes using definition types that incorporate parsing
functionality—parse, match, standardization, and gender definitions can all use parse
functionality—are directly affected by the way parse definitions are constructed. A
parse definition built to process email addresses is much less complex than a parse
definition that processes address information. This has to do with the specifics of the
data type itself. Data types that have more inherent variability most likely have parse
definitions that are more complex, and processes using these more complex
definitions perform more slowly. When creating custom parse definitions, it is easy to
accidentally create an algorithm that is not optimized for performance. Training
materials are available from DataFlux that teach the proper way to design a parse
definition.

• Complex Regular Expression Libraries: Many definitions use regular expression
files to do some of the required processing work. Sometimes regular expression
libraries are used to normalize data, while other times they are used to categorize
data. Incorrectly constructed regular expressions are notorious for being resource
intensive. This means you might design a perfectly valid regular expression that takes
an extremely long time to accomplish a seemingly simple task. DataFlux-designed
definitions have been optimized for performance. If you create custom definitions, be
sure to learn how to create efficient regular expressions. Training materials are
available from DataFlux that teach Quality Knowledge Base customization.

DataFlux dfPower Studio 21

Introduction to dfPower Studio
This chapter describes dfPower® Studio and its component applications and application
bundles. Topics in this chapter include:

dfPower Studio Overview

dfPower Studio Navigator

The AIC Process and the Five Steps to More Valuable Enterprise Data

Overview
You can access dfPower Studio functionality through a graphical user interface (GUI) known
as dfPower Studio Navigator, using the command line, or in batch operation mode,
providing you flexibility in addressing your data-quality issues. The dfPower Studio main
screen is a centralized location from which to launch the dfPower Studio applications. All of
the dfPower Studio applications can be accessed through the Tools menu of dfPower Studio
Navigator.

dfPower Studio consists of these nodes and application bundles:

• dfPower Studio — Base

• dfPower Studio — Profile

• dfPower Studio — Integration

• dfPower Studio — Design

• dfPower Studio — Other Tools

These application bundles are described in greater detail later in this guide.

 Note: Some applications will not be available for launching if you have not
licensed them.

Navigator
When you launch dfPower Studio, the Navigator window appears.

The Navigator is an essential part of the dfPower solution. The Navigator was designed to
help you collect, store, examine, and otherwise manage the various data quality and
integration logic and business rules that are generated and created during dfPower Studio
use.

Quality Knowledge Bases, Management Resources, and Reference Sources are all containers
for metadata that provide you a complete view of your data quality assets and help you
build complicated data management processes with ease.

22 DataFlux dfPower Studio

Use dfPower Studio to incorporate data quality business rules that are used across an entire
enterprise within many different aspects of business intelligence and overall data hygiene.
These business rules are stored as objects that are independent of the underlying data
sources used to create them. Thus, there is no limit to the application of these business
rules to other sources of data throughout the enterprise, including internal data sets,
external data sets, data entry, internal applications, the web, and so on. From the smallest
spreadsheets buried in the corners of the enterprise, all the way up to corporate operational
systems on mainframes, you can use the same business rules to achieve consistent data
integrity and usability across the entire enterprise.

More specifically, the Navigator:

• Stores all business rules generated during any of the various dfPower Studio
processes

• Allows metadata to be maintained for each of these data quality objects

• Allows reuse of these data quality jobs and objects across the various applications

• Facilitates quick launches of various stored data management jobs with a few clicks of
the mouse

• Maintains all reports that are generated during data quality processing

• Manages various configurations of the various data quality processes routinely
implemented by the organization

• Maintains information about batch jobs and the various schedules of these jobs

AIC Process and Five Steps to More Valuable
Enterprise Data
The dfPower Studio bundles have been designed to directly support the Analyze, Improve,
and Control (AIC) process and the building blocks of data management. AIC is a method of
finding data problems, building reusable transformations, and strategically applying those
transformations to improve the usability and reliability of an organization's data.

DataFlux dfPower Studio 23

DataFlux Methodology

The five steps to more valuable enterprise data of AIC data management are:

• data profiling

• data quality

• data integration

• data enrichment

• data monitoring

As you will see, these steps closely mirror the structure of dfPower Studio's main menu. For
more information, see the DataFlux white paper entitled, Five Steps to More Valuable
Enterprise Data.

dfPower Studio – Base
At the heart of dfPower® Studio is the bundle of applications and functions collectively
known as dfPower Studio - Base. dfPower Studio - Base is the infrastructure that ties all the
dfPower Studio applications together, allowing them to interact, process data simultaneously
at scheduled times, and share information where necessary. To access these applications
using the main dfPower Studio menu, click Tools > Base.

dfPower Studio - Base consists of the following components:

• Architect — Design a workflow for processing your data

• DB Viewer — View and retrieve records from your data sources

• Business Rule Manager — Create and manage business rules

• Monitor Viewer — View task data in a repository

24 DataFlux dfPower Studio

Architect

dfPower Architect brings much of the functionality of the other dfPower Studio applications
(such as dfPower Base - Batch and dfPower Profile - Viewer), as well as some unique
functionality, into a single, intuitive user interface. In Architect, you define a sequence of
operations—for example, selecting a source data, parsing that data, verifying address data,
and outputting that data into a new table—and then run the operations at once. This
functionality not only saves you the time and trouble of using multiple dfPower Studio
applications, but also helps to ensure consistency in your data-processing work.

To use Architect, you specify operations by selecting job flow steps and then configuring
those steps, using straightforward settings, to meet your specific data needs. The steps you
choose are displayed on dfPower Architect's main screen as node icons, together forming a
visual job flow.

Architect can read data from virtually any source, including data processed and output to a
text file, HTML reports, database tables, and a host of other formats.

DBViewer

dfPower DBViewer is a record viewer that permits you to view and retrieve records from
your various data sources.

Business Rule Manager

Use the Rule Manager to create and manage business rules and custom metrics to add them
to a job to monitor the data. You can use business rules and custom metrics to analyze data
to identify problems. The Rule Manager provides tools for building expressions for custom
metrics and rules. You can create custom metrics to supplement the standard metrics
available in dfPower Profile or to be used in rules and tasks with dfPower Architect. Use the
Rule Manager to create tasks that implement one or more rules. You can then execute these
tasks at various points in a dfPower Architect job flow and trigger events when the
conditions of a rule are met.

Monitor Viewer

When you run a job in dfPower Architect, the job executes tasks and rules that you created
using the Business Rule Manager. Information about these executed tasks and their
associated rules are stored in the default repository. The Monitor Viewer lets you view the
information stored in the repository about the tasks and rules executed.

dfPower Studio - Profile
Start any data quality initiative with a complete assessment of your organizations
information assets. Use dfPower® Profile to examine the structure, completeness, suitability
and relationships of your data. Through built-in metrics and analysis functionality, you can
find out what problems you have, and determine the best way to address them.

DataFlux dfPower Studio 25

Using dfPower Profile, you can:

• Select and connect to multiple databases of your choice without worrying about your
sources being local, over a network, on a different platform, or at a remote location.

• Create virtual tables using business rules from your data sources in order to scrutinize
and filter your data.

• Run multiple data metrics operations on different data sources at the same time.

• Run primary/foreign key and redundant data analyses to maintain the referential
integrity of your data.

• Monitor the structure of your data as you change and update your content.

The following tools are available within Profile.

Configurator

The Configurator screen appears when you first start Profile. Use the Configurator to set up
jobs to profile your data sources.

Viewer

Allows you to view the results of a dfPower Profile job.

Explorer

dfPower Explorer is a relationship diagramming tool that allows you to display matching
tables and the relationships between them. The relationship arrows can be removed to
invalidate a relationship. To add a new relationship, the user can drag an arrow from one
table column to the matching table's column.

Scheme Builder

Use the Scheme Builder to build a standardization scheme from an analysis report, edit
existing schemes, or to create new schemes.

dfPower Studio - Integration
As data integration power tools, Match and Merge help to ensure database consistency and
reduces costs associated with duplicate records.

Match

Match uses record merging along with clustering algorithms to develop a match code that
identifies duplicate or near-duplicate records. The match sensitivity, which determines how
precisely the match codes are calculated, is flexible and can be adjusted in the tool itself.
The Match tool begins the process by parsing the data into tokens using grammars. Once
tokens are available, it standardizes them, removing ambiguities. Based on sensitivity
settings, it then creates match codes from tokens that later are used in the final merging
and clustering step. Match handles this process internally, without user interaction.
Regardless of the data source, users simply set within the tool the criteria to be used for

26 DataFlux dfPower Studio

matching. For instance, in the beginning the user may set a simple matching criterion to
match on name; later this can be elaborated to name and address, or name or address.

Merge

Merge is used in conjunction with Match to identify and combine duplicate records. After
employing Match to identify duplicate records, use dfPower® Merge to manually review and
edit the surviving record for each cluster of duplicate records.

dfPower Studio - Design
Designed for advanced users, dfPower® Design is a development and testing bundle of
applications for creating and modifying data-management algorithms (such as algorithms
for matching and parsing) that are surfaced in other DataFlux® products. dfPower Design
provides several GUI components to facilitate this process, as well as extensive testing and
reporting features to help you fine tune your data quality routines and transformations.
Some of the dfPower Design tasks you can perform include:

• Creating data types and processing definitions based directly on your own data.

• Modifying DataFlux-designed processing definitions to meet the needs of your data.

• Creating and editing regular expressions (regex library) to format and otherwise clean
inconsistent data.

• Creating and editing phonetics library files, which provide a means for better data
matching.

• Creating and modifying extensive look-up tables (vocabularies) and parsing rule
libraries (grammars) used for complex parsing routines.

• Creating and modifying character-level chop tables used to split apart strings of text
according to the structure of the data.

• Creating and modifying transformation tables (schemes) that you can apply on a
phrase or element-level basis.

• Testing parsing, standardization, and matching rules and definitions in an interactive
or batch mode before you use them to process live data.

• Generating extensive character-level and token-level reporting information that allows
you to see exactly how a string is parsed, transformed, cleaned, matched, or
reformatted.

• Creating data types and processing definitions specific to your locale.

Customize

Customize is used to modify or create data quality algorithms used by DataFlux products
and SAS Data Quality Server.

DataFlux dfPower Studio 27

Parse Definition Quick Editor

The dfPower Customize Parse Definition Quick Editor uses customer data to automatically
build chop tables, vocabularies, and grammars.

Vocabulary Editor

This tool allows you to create and modify collections of words used to compare data. Each
word in the vocabulary is defined as belonging to one or more categories, which are defined
in an associated grammar.

Grammar Editor

The Grammar Editor allows you to set up rules that define patterns of words.

Regex Editor

The Regex Editor is a tool for creating and modifying regular expressions. In the context of
parse definitions, standardization definitions, and match definitions, regular expressions are
primarily intended for character-level cleansing and transformations. For word- and phrase-
level transformations, you should instead use standardization data libraries.

Phonetics Editor

The Phonetics Editor allows you to create rules to identify similar-sounding data strings.

Chop Table Editor

Chop tables create an ordered word list from an input string through the use of character-
level rules.

For more detailed information on available Customize functions, refer to DataFlux dfPower
Studio Online Help.

dfPower Studio - Other Tools
License Manager and Copy QAS Configuration are two additional tools to assist you in
configuring dfPower® Studio.

License Manager

Use this application to set your licensing method or change the location of your licensing
server. If you make changes here, you must restart all DataFlux® applications before
changes will take effect. Options for licensing method are:

• DataFlux license server

• DataFlux license file

• SAS® license file

28 DataFlux dfPower Studio

Copy QAS Configuration

Select Copy QAS Configuration on the Other menu if you wish to copy or replace your
QAS configuration.

DataFlux dfPower Studio 29

Sample Data Management
Scenario
This chapter takes you through a sample data management scenario and provides an
overview of dfPower® Studio. The sample data management scenario highlights the typical
procedures in a data-management project, following the DataFlux® five-building-block
methodology: Profiling, Quality, Integration, Enrichment, and Monitoring.

Other Sources

• This chapter highlights some typical procedures in a data-improvement project. For
step-by-step details of the procedures, please refer to the DataFlux dfPower Studio
Online Help.

• The first scenario in this chapter follows a straight-line path through the DataFlux
methodology. In practice, however, this methodology is highly iterative; as you find
problems, you will dig deeper to find more problems, and as you fix problems, you will
find more problems to fix.

• Throughout the data management scenario, we mention the dfPower Studio
applications we use to accomplish each task. In most cases, a task can be performed
by more than one application, although the available options and specific steps to
accomplish that task might differ. For example, you can profile data with both dfPower
Profile and dfPower Architect's Basic Statistics and Frequency Distribution job steps.

Data Management Scenario Background

An organization has a Contacts database and a Purchase database that have been
maintained independently. The organization needs to integrate the customer records from
both sources. Our job is to:

• ensure that all records follow the same data standards,

• identify and merge duplicate records, and

• prepare the records for an upcoming mailing to all customers

First, we will perform data discovery known as Profiling.

Profiling
Profiling is a proactive approach to understanding your data. Also called data discovery or
data auditing, data profiling helps you discover the major features of your data landscape:
what data is available in your organization and the characteristics of those data.

In preparing for an upcoming mailing, we know that invalid and non-standard addresses will
cause a high rate of returned mail. By eventually standardizing and validating the data, we
will lower our risks of not reaching customers and incurring unnecessary mailing costs. Also,
by understanding the data structure of customer records, we will be better able to join,
merge, and de-duplicate those records.

30 DataFlux dfPower Studio

Where are your organization's data? How do data in one database or table relate to data in
another? Are your data consistent within and across databases and tables? Are your data
complete and up to date? Do you have multiple records for the same customer, vendor, or
product? Good data profiling serves as the foundation for successful data-management
projects by answering these questions up front. After all, if you do not know the condition of
your data, how can you effectively address your data problems?

Profiling helps you determine what data and types of data you need to change to make your
data usable.

Data Profiling Discovery Techniques

The many techniques and processes used for data profiling fall into three major categories:

• Structure Discovery

• Data Discovery

• Relationship Discovery

The next three sections address each of these major categories in our data management
scenario.

 Caution: As you profile your own data, resist the urge to correct data on
the spot. Not only can this become a labor-intensive project, but you might
be changing valid data that only appears invalid. Only after you profile your
data will you be fully equipped to start correcting data efficiently.

Structure Discovery

The first step in profiling the data is to examine the structure of that data. In structure
discovery, we determine if:

• our data match the corresponding metadata

• data patterns match expected patterns

• data adhere to appropriate uniqueness and null-value rules

Discovering structure issues early in the process can save much work later on, and
establishes a solid foundation for all other data-management tasks. To profile the
organization in this example, do the following:

1. To launch the Configurator, click Tools > Profile > Configurator.

2. In dfPower® Profile - Configurator, select the DataFlux® Sample database and click
Contacts.

 Note: By default, the DataFlux Sample database is located at
C:\Program Files\DataFlux\dfPower Studio\8.2.1\sample\dfDemo.mdb.

3. To select all of the fields, click the checkbox next to each.

4. From the main menu, click Job > Select Metrics.

DataFlux dfPower Studio 31

5. Select Frequency distribution, Pattern frequency distribution, Percentiles, and
Outliers. Click Select/unselect all to select all Column profiling metrics.

6. Click Job > Run Job. Save job as ContactsProfile1.

Here is some of the information we can see about each data field:

• Column profiling: For each field, a set of metrics such as data type, minimum and
maximum values, null and blank counts, and data length.

• Frequency distribution: How often the same value occurs in that field, presented both
as text and in a chart.

• Pattern distribution: How often the same pattern occurs in that field, presented both
as text and in a chart.

The information we can glean from each metric depends on the field. For example, we look
at some column profiling metrics for the Contacts field that specifies the customer's ID:

Metric Name Metric Value

Data Type VARCHAR

Unique Count 3276

Pattern Count 5

Minimum Value 1

Maximum Value 999

Maximum Length 5

Null Count 0

Blank Count 0

Actual Type integer

Data Length 9 chars

These metrics highlight some issues:

• The official type set for the field in VARCHAR, but the actual values are all integers.
While this is not a major data problem, it can slow processing.

• The maximum length of the actual data values is 5, but the data length reserved for
the field is 9. That is 4 characters of reserved but unused space for each record.

Note: We will look at the Unique Count, Minimum Value, and Maximum
Values later in Data Discovery.

Next, we look at the pattern frequency distribution for this field:

Pattern Alternate Count Percentage

9999 9(4) 2276 69.47

999 9(3) 900 27.47

99 9(2) 90 2.75

32 DataFlux dfPower Studio

Pattern Alternate Count Percentage

9 9 9 0.27

99999 9(5) 1 0.03

The table above shows those IDs expressed with different numbers of digits. There does
appear to be one ID that is longer than needed to have uniqueness with this number of
records.

Note: dfPower Studio expresses patterns using "9" for a digit, "A" for an
uppercase letter, "a" for a lowercase letter, and spaces and punctuation
marks for spaces and punctuation marks. In addition, dfPower Studio also
expresses alternate shorthand patterns, where each "9," "A," and "a" is
followed by a number in parentheses that provides a count of each character
type at that location in the value, unless that count is 1.

Value Pattern Alternate

1 9 9

1997 9999 9(4)

1-919-555-1212 1-999-999-9999 9-9(3)-9(3)-9(4)

(919) 555-1212 (999) 999-9999 (9(3)) 9(3)-9(4)

Mary Aaaa Aa(3)

Mary Smith-Johnson Aaaa Aaaaa-Aaaaaaa Aa(3) Aa(4)-Aa(6)

We continue to review these metrics for every field in this table, making notes on each data
problem we find. We also review metrics for the fields in our example, where we find
additional data problems. For example, the PHONE field uses two different patterns.

Data Discovery

Our second data profiling step, data discovery, helps us determine whether our data values
are complete, accurate, and unambiguous. If they are not, this can prevent us from
adequately recognizing the customer needs, and can make it difficult to tie these records to
other data.

We take a look at a set of metrics for the STATE field of the Purchase table. This time, we
focus on the Unique Count, Minimum Value, and Maximum Value metrics, and we discover
some discrepancies:

• The Minimum Length and Maximum Length are each 2, but 255 characters are
dedicated to this field.

• There are 64 unique values, but there are only 50 states. Even including all Canadian
provinces and territories would only bring the possible total up to 63. It is likely that
some of these are incorrect.

We do this analysis for every field for both tables.

Next, we look at part of the frequency distribution for each field. The following table shows
frequency distribution for The Company's Purchase table's STATE field.

DataFlux dfPower Studio 33

Value Count Percentage

(null value) 3596 71.89

CA 131 2.62

TX 111 2.22

MA 61 1.22

FL 60 1.20

NY 54 1.08

ON 54 1.08

GA 50 1.00

NJ 48 0.96

IL 46 0.92

PA 45 0.90

TN 42 0.84

...

We already determined that there are 64 unique values for the STATE field. Now we can see
the actual values, and they are all valid. They include US states, the District of Columbia,
Canadian provinces, Puerto Rico, Virgin Islands, and Guam.

Next, we look at these same count metrics for both tables across several fields:

 ID COMPANY CONTACT ADDRESS CITY STATE PHONE

Count 3276 3276 3276 3276 3276 3276 3276

Null Count 0 0 0 124 0 37 11

Unique Count 3276 1407 3243 2389 2804 61 3220

 ID COMPANY CONTACT ADDRESS CITY STATE PHONE

Count 5002 5002 5002 5002 5002 5002 5002

Null Count 0 1726 1726 1850 4311 3596 681

Unique Count 5002 1293 3243 2389 407 64 2890

The two preceding tables clearly show that while the Contacts table is nearly complete,
there is a large amount of data missing from the Purchase table. In particular, null counts
greater than 0 show that data is missing for COMPANY, CONTACT, ADDRESS, CITY, STATE,
and PHONE.

Looking at the Count and Unique Count values, we discover that both values are equal for
both tables' ID fields. This means we can use this field to uniquely identify records.

To find other issues, we review data length and type metrics for both tables across several
fields:

34 DataFlux dfPower Studio

 ID COMPANY ADDRESS CITY STATE DATE

Data Length 9 50 100 30 15 19

Maximum Length 6 40 30 28 14 19

Data Type VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR DATETIME

 ID COMPANY ADDRESS ADDRESS2 CITY STATE ORDER
DATE

Data Length 10 255 255 255 255 255 255

Maximum
Length

10 38 34 37 19 2 10

Data Type VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR VARCHAR

These metrics highlight differences in data length between the tables:

• The Contacts table stores customers' addresses in a single ADDRESS field, while the
Purchase table uses separate ADDRESS and ADDRESS2 fields.

• While many of the other fields in both tables have the same name, the fields are of
different lengths. For example, the CITY Data Length is 30 for Contacts and 255 for
Purchase. Also, the STATE Maximum Length is 14 for Contacts, which is larger than
the STATE field in the Purchase table, which has a Maximum Length of 2.

• Similar fields also have different data types between the two tables. For example, the
Contacts DATE field is set to DATETIME, while the Purchase ORDER DATE field is set
to VARCHAR.

Next, take a look at the actual records. To do this from the report in dfPower Profile's
Viewer component, we select a field with questionable metrics, and then double-click on
that metric. For example, to view records with "CA." as the STATE value, in the Viewer we
select the STATE field, show the frequency distribution for that field, then double-click on
the "CA." value. The following table shows selected field values for five customer records in
the Contacts table where the STATE value is questionable:

ID Company Contact Address City State Phone

320 Gates Rubber Co W. Nickels 3402 Falcon
Ridge Rd

Round Lake CA. 390-766-
5114

316 Gates Rubber
Company

Kelly
Tullman

29 Amaranth Dr Mogote California 237-201-
0357

1168 Federal Express Amanda
Oliveira

152 Kenton St
J223

North
Fillmore

North
Car.

265-567-
3614

1301 Ernest W Hahn
Inc.

Janet
Wenner

530 E Patriot
Blvd

Frederiksted Hawaai 240-484-
1695

1270 Epter Norton
Computing

Y Mc Hugh 3983 S
McCarran Blvd

Green Bay ohioo 352-193-
4453

DataFlux dfPower Studio 35

By looking through a sampling of records with suspect data, we discover some problems
metrics did not show:

• The STATE values for ID=1168, 1301, and 1270 are invalid.

• The STATE values for ID=320 and ID=316 are valid but inconsistent. Most records in
the Contacts and Purchase tables contain a two-letter abbreviation in the STATE field.

• The area code for ID=320, 316, and 1168 are invalid because 390, 237, and 265 are
not used as area codes.

• The area code for ID=1301 and ID=1270 are invalid because 240 is a code for
Maryland and 352 is a code for Florida.

• The COMPANY name is inconsistent. For example, ID=320 uses Gates Rubber Co
while ID=316 uses Gates Rubber Company.

• The CONTACT for ID=1270 has a space between the Mc and Hugh in the CONTACT
field's last name.

Relationship Discovery

Our final data profiling step, relationship discovery, can help us answer these questions:
Does the data adhere to specified required key relationships across columns and tables? Are
there inferred relationships across columns, tables, or databases? Are there redundant
data?

Here are some other problems that can result from the wrong relationships:

• A product ID exists in your invoice register, but no corresponding product is available
in your product database. According to your systems, you have sold a product that
does not exist.

• A customer ID exists on a sales order, but no corresponding customer is in your
customer database. In effect, you have sold something to a customer with no
possibility of delivering the product or billing the customer.

• You run out of a product in your warehouse with a particular UPC number. Your
purchasing database has no corresponding UPC number. You have no way to restock
the product.

For the purposes of demonstrating relationship discovery in our scenario, let us say we
know from earlier profiling that while Contacts contains unique COMPANY values, some
values for COMPANY in the Purchase table are invalid because Purchase was not populated
with data from the Contacts table. To help determine how much work might be involved in
identifying and fixing the invalid COMPANY values in Purchase table records, we will run two
analyses:

• A redundant data analysis determines how many values are common between the
Contacts COMPANY field records and the Purchase COMPANY field records.

• A primary key/foreign key analysis shows us which specific values in the customer
records do not match, and thus are likely to be the invalid codes.

To run our redundant analysis, we start with dfPower Profile's Configurator component. On
the Configurator main dialog, right-click on the COMPANY field in the Contacts table and

36 DataFlux dfPower Studio

choose Redundant Data Analysis. In the screen that appears, select the COMPANY field in
the Purchase table. Then, run the job, and the results appear in dfPower Profile's Viewer
component. In the Viewer, select the Contacts table and COMPANY field and display the
Redundant Data Analysis results:

Field Name Table Name Primary Count Common Count Secondary Count

COMPANY Purchase 2388 1898 2266

The results tell us that in the Contacts table 1898 records have COMPANY values that are
also in the Purchase table's COMPANY field, the Purchase table contains 2388 codes that are
not used by the Contacts table, and the Contacts table has 2266 occurrences of COMPANY
values that do not occur in the Purchase table. This means we need to update 2266 records
in the Purchase customer table.

Click on the COMPANY field on the Redundant Data Analysis tab to reveal a Venn diagram
showing an alternate view of the data:

Redundant Data Analysis Venn Diagram

Now let us look at the same tables using primary key/foreign key analysis. To do this, we
again start with dfPower Profile's Configurator component. On the Configurator main
dialog, we right-click on the COMPANY field in Contacts table and choose Primary
Key/Foreign Key Analysis. In the screen that appears, we select the COMPANY field in
the Purchase table. Then, run the job, and the results appear in dfPower Profile's Viewer
component. In the Viewer, select the Contacts table's COMPANY field and display the
Primary Key/Foreign Key Analysis results:

Field Name Table Name Match Percentage

COMPANY Purchase 20.19

 Outliers for field: COMPANY Count Percentage

Northrop Grumman Corp 25 0.63

Loma Linda Univ Medical Ctr 16 0.40

Taco Bell Corp 11 0.28

Hunt-Wesson Inc 8 0.20

Metropolitan Water Dist 8 0.20

DataFlux dfPower Studio 37

 Outliers for field: COMPANY Count Percentage

Naval Medical Ctr 7 0.18

Good Samaritan Regional Med Ctr 7 0.18

The Match Percentage confirms that of all the COMPANY VALUES in the Purchase table's
customer records, 20.19% are also in the Contacts table. Much more valuable for our
purposes, though, is the list of outliers for the COMPANY field. We can now see that
although 79.81% of the COMPANY values in the Purchase table's customer records are
invalid, many values are repeated with slight variations in spelling. This could be pretty
good news if the invalid values are consistent; if so, we only need to figure out how the
invalid values map to valid ones.

With all that we have learned about our data in data profiling—through structure discovery,
data discovery, and relationship discovery—we are now ready to move on to the next data-
management building block, Quality.

For more information on Profiling, look for "Profile" in the DataFlux dfPower Studio Online
Help.

Quality
Using the next data management building block—Quality—we start to correct the problems
we found through profiling. When we correct problems, we can choose to correct the source
data, write the corrected data to a different field or table, or even write the proposed
corrections to a report or audit file for team review. For example, we might leave the
Contacts customer table untouched, writing all the corrected data to an entirely new table.

Typical operations to improve data quality include:

• Parsing

• Standardization

• Matching

The goal of parsing and standardization is to improve overall consistency, validity, and
usability of the data. Quality can also include creating match codes in preparation for joining
and merging in the Integration building block.

Parsing

Parsing refers to breaking a data string into its constituent parts based on the data's type.
Parsing is usually done in preparation for later data management work, such as verifying
addresses, determining gender, and integrating data from multiple sources. Parsing can also
improve database searches as well as increase their speed.

For our data, parsing the Contacts table's CONTACT field into separate First Name and Last
Name fields helps us in two ways:

38 DataFlux dfPower Studio

• It makes integrating the Contacts and Purchase name data easier.

• For an upcoming customer mailing, it allows us to address customers in a more
personal way. For example, we can open a letter with Dear Edward or Dear Mr. Smith
instead of Dear Edward Smith.

Parsing Techniques

Using the dfPower® Architect application, we parse the name of our customers. To parse:

1. Launch dfPower Architect from the dfPower Base menu.

2. Use the Data Source job step to add the Contacts table to the dfPower Architect job
flow.

3. Add a Parsing step.

4. Indicate that dfPower Architect should look in the CONTACT field for both first and last
names.

5. Output the parsed values into separate FIRST NAME and LAST NAME fields.

The following table shows CONTACT values after parsing:

CONTACT FIRST NAME LAST NAME

James E. Briggs James Briggs

Bob Brauer Bob Brauer

LUTHER BAKER LUTHER BAKER

Irene Greaves Irene Greaves

Rob Drain Rob Drain

...

G. Weston G. Weston

...

Shannon Osterloh Shannon Osterloh

Notice that we did not remove the CONTACT values. We just added fields and values for
FIRST NAME and LAST NAME. Also, note that dfPower Architect disregarded the "E." in
James E. Briggs since we did not include Middle Name in our Parsing step.

With FIRST NAME in its own field, we can now use dfPower Architect for gender analysis. To
do this, we add a Gender Analysis (Parsed) step and indicate that dfPower Architect should
look in the new FIRST NAME field to determine gender and output updated gender values
back to a new GENDER field. Our data now looks like this:

CONTACT GENDER FIRST NAME LAST NAME

James E. Briggs M James Briggs

Bob Brauer M Bob Brauer

LUTHER BAKER M LUTHER BAKER

Irene Greaves F Irene Greaves

DataFlux dfPower Studio 39

CONTACT GENDER FIRST NAME LAST NAME

Rob Drain M Rob Drain

...

G. Weston U G. Weston

...

Shannon Osterloh U Shannon Osterloh

This time, the GENDER field was updated. Note that Shannon Osterloh is marked as a U
because Shannon is a name given to both men and women. Also note that the Gender value
for G. Weston is unknown because an initial is not enough information to determine gender.

We could have used the dfPower Architect Gender Analysis step both to parse the CONTACT
field and identify gender in the same step. However, we would not then been able to use
the FIRST NAME and LAST NAME fields, which we know we will need later for our mailing.
We also could have used the Gender Analysis step if the CONTACT field contained first,
middle, and last names; this approach would allow Architect to identify gender even better
by using both first and middle names.

Standardization

While profiling our data, we discovered several inconsistencies in the CONTACTS,
STATE, and PHONE fields of the Contacts table.

Let us look at a sampling of data, focusing on the STATE field:

FIRST NAME LAST NAME ADDRESS STATE

James Briggs 19 East Broad Street Missouri

Bob Brauer 6512 Six Forks Road - 404B North Carolina

LUTHER BAKER 3560 E 116TH ST CA

Irene Greaves 555 W 5th St OH

Rob Drain 7718 Elder Way OH

...

Nancy Weinstock 2134 Estrado Cir

To standardize these designations, we again use the dfPower Architect application.
Continuing the job flow we created for parsing and gender identification, we add a
Standardization job step. For this job step, we instruct dfPower Architect to use the
DataFlux®-designed Address standardization definition for the Street Address field and the
State (Two Letter) standardization definition for the State field. Both standardization
definitions change the addresses to meet US Postal Service standards.

After standardizing these two fields, here is how our records look:

FIRST NAME LAST NAME ADDRESS STATE

James Briggs 19 E Broad St MO

Bob Brauer 6512 Six Forks Rd 404B NC

LUTHER BAKER 3560 E 116Th St CA

40 DataFlux dfPower Studio

FIRST NAME LAST NAME ADDRESS STATE

Irene Greaves 555 W Fifth St OH

Rob Drain 7718 Elder Way OH

...

Nancy Weinstock 2134 Estrado Cir

Notice that one of the STATE fields is still blank. Standardization confirms existing values to
a standard, but does not fill in missing values.

One last thing before we leave Standardization: As you might recall, in Data Discovery, we
saw that the Contacts table's PHONE field uses a 999-9999-999 pattern, while the Purchase
table's PHONE field is inconsistent. We will skip the details here, but to transform one of the
patterns to another, we use dfPower Customize to create a new standardization definition,
and then use that new definition in a dfPower Architect Standardization job step. For more
information, see dfPower Studio Online Help - Customize.

Note: Assuming we had all the required standardization definition schemes
and definitions at the outset, the most efficient way to standardize all three
fields—ADDRESS, STATE, and GENDER—is to use one Standardization job
step in dfPower Architect, and assign the appropriate definition or scheme to
each field.

Matching

Matching seeks to uniquely identify records within and across data sources. Record
uniqueness is a precursor to Integration activities.

While profiling, we discovered some potentially duplicate records. As an example, we have
identified three Contacts records that might be all for the same person, as shown below:

 Record 1 Record 2 Record 3

FIRST NAME John John JOHN

LAST NAME Doe Doe DOE

ADDRESS 75 Columbus Avenue 75 Columbus Ave 3684 TRAVER RD

STATE MI Mich CA

To help determine if these records are indeed for the same customer, we launch the
dfPower Integration – Match application; select the Contacts table; assign the appropriate
DataFlux-designed and custom-created match definitions to the fields we want considered
during the match process, set match sensitivities and conditions, and run an Append Match
Codes job. The result is a new field containing match codes, as shown below.

 Record 1 Record 2 Record 3

FIRST NAME John John JOHN

LAST NAME Doe Doe DOE

ADDRESS 75 Columbus Avenue 75 Columbus Ave 3684 TRAVER RD

DataFlux dfPower Studio 41

 Record 1 Record 2 Record 3

STATE MI Mich CA

MATCH CODE GHWS$$EWT$ GHWS$$EWT$ GHWS$$WWI$

Based on our match criteria, dfPower Integration – Match considers Record 1 and Record 2
to be for the same person. Record 3 is very similar—note how the first four characters of
the match code () are the same as Records 1 and 2—but the ADDRESS is different.

Of course, we could have figured this out manually, but it gets much more difficult when
you need to make matches across thousands of records. With this in mind, we create match
codes for both tables.

Now that we have finished parsing, standardizing, and creating match codes for both tables,
we are ready to move on to the Integration building block.

For more information on the Quality building block, search for Quality in the DataFlux
dfPower Studio Online Help.

Integration
Data integration encompasses a variety of techniques for joining, merging/de-duplicating,
and householding data from a variety of data sources. Data integration can help identify
potentially duplicate records, merge dissimilar data sets, purge redundant data, and link
data sets across the enterprise through:

• Joining

• Merging/De-duplicating

• Householding

Joining

Joining is the process of bringing data from multiple tables into one. For our data, we have
three options for joining:

• Combine the Contacts table into the Purchase table

• Combine Purchase table into the Contacts table

• Combine both tables into a new table

We decide to combine both tables into a new table. As we start this process, we recall that
the data types and lengths for similar fields differ between the two tables, and that some
data types and lengths should be adjusted for increased efficiency. For example, currently:

• The Data Lengths for many of the fields vary between the two tables.

• Similar fields also have different data types between the two tables. For example, the
Contacts DATE field is set to DATETIME, while the Purchase ORDER DATE field is set
to VARCHAR.

42 DataFlux dfPower Studio

• The Contacts table stores customers' addresses in a single ADDRESS field, while the
Purchase table uses separate ADDRESS and ADDRESS2 fields.

We could address all these issues by opening each table using the appropriate database tool
(for example, dBase or Oracle) and changing field names, lengths, and types as needed,
making sure data lengths for any given field is at least as large as the actual maximum
length of those fields in both tables. However, we can also change data types and lengths
and join the two tables into a new table using dfPower® Architect.

To begin, start a new job flow in dfPower Architect. Click Data Inputs > Data Source and
add the Contacts table to the flow. On the Output Fields tab for that job step, click
Override, which lists each field and its length. To set a new length for a field, specify that
length in the Override column. To set a new type for a field, specify the new type in the
Override column. To set a new length and type, specify the length followed by the type in
parentheses. For example, to change the field from a data length of 20 and a type of
VARCHAR to a data length of 4 and a type of INTEGER, specify 4(INTEGER). We take
similar steps for the Purchase table, adding a second Data Source job step to the flow and
using the Override Defaults dialog to change data lengths and types.

Now that both tables are at the top of our job flow and similar fields have the same data
lengths and types, click Utilities > Data Union, and then click Add to create one-to-one
mappings between similar fields in each table and to the combined field in the new table.
The Data Union job step does not create records with combined data, but rather it adds
records from one table as new records to the other without making any changes to the
original records. For example, we map the Contacts FIRST NAME field and Purchase FIRST
NAME field to a combined Customer FIRST NAME field.

Finally, click Data Outputs > Data Target (Insert) to create a job step that specifies a
database and new table name. Then run the job flow to create a new table that contains all
the customer records for both tables.

If there was a common field in both tables (ideally primary key/foreign key fields), we could
have used a Data Joining job step in dfPower Architect to combine matching records as we
combined the two tables. For example, if we had one table that contained unique customer
IDs and customer name information and another table that had unique customer IDs and
customer phone numbers, we could use a Data Joining job step to create a new table with
customer IDs, names, and phone numbers.

To illustrate this approach, we will start with these two hypothetical sets of records:

Customer ID First Name Last Name

100034 Robert Smith

100035 Jane Kennedy

100036 Karen Hyder

100037 Moses Jones

Customer ID Phone

100034 (919) 484-0423

100035 (919) 479-4871

DataFlux dfPower Studio 43

Customer ID Phone

100036 (919) 585-2391

100037 (919) 452-8472

Using the Data Joining job step, we could identify Customer ID as the primary key/foreign
key fields and create the following records:

Customer ID First Name Last Name Phone

100034 Robert Smith (919) 484-0423

100035 Jane Kennedy (919) 479-4871

100036 Karen Hyder (919) 585-2391

100037 Moses Jones (919) 452-8472

Merging/De-duplicating

Now that we have all the customer records in one table, we can look for records that appear
to be for the same customer and merge the data from all records for a single customer into
a single surviving record.

Let us look at selected fields in three records that might be for the same customer:

 Record 1 Record 2 Record 3

First Name Robert Bob Rob

Last Name Smith Smith Smith

Street Address 100 Main 100 Main St

City Carrboro Carrboro

State NC

ZIP 27510 27510

Match Code GHWS$$EWT$ GHWS$$EWT$ GHWS$$WWI$

Notice that each record contains a match code, which we generated in the Matching section
of the Integration building block. We can use these codes as keys to find and merge
duplicate records. To do this, click Tools > Integration > Match on the dfPower Studio
main menu. Select our combined customer records table, choose Outputs > Eliminate
Duplicates, then set a match definition of Exact for the Match Code field.

Note: Because we already generated and appended match codes to our
records in the Quality building block, we only need to match on the Match
Code field. If we did not already have match codes, however, we could specify
match definitions and sensitivities for selected fields in Integration – Match
and the application would use match codes behind the scenes to find multiple
records for the same customer. We could even set OR conditions such as If
FIRST NAME, LAST NAME, and ID are similar OR if FIRST NAME, LAST NAME,
and ADDRESS are similar.

We then choose Settings from the Eliminate Duplicates output mode and specify several
options for our duplicate elimination job, including Manually Review Duplicate Records,

44 DataFlux dfPower Studio

Physically Delete Remaining Duplicates, and those surviving records should be written
back to the Current Source Table. When the options are all set, run the job, and after
processing, the Duplicate Elimination File Editor dialog appears, showing our first
surviving records from a cluster of records that might be for the same customer. The results
look something like this:

 FIRST NAME LAST NAME ADDRESS CITY STATE PHONE

X Robert Smith Carrboro NC GHWS$$EWT$

 FIRST NAME LAST NAME ADDRESS CITY STATE PHONE

X Robert Smith 100 Main St Carrboro NC GHWS$$EWT$

 Bob Smith 100 Main GHWS$$EWT$

 Rob Smith 100 Main St Carrboro GHWS$$WWI$

Notice that the surviving record and first record in the cluster are both checked and contain
the same data. The Duplicate Elimination File Editor has selected the Robert Smith record as
the surviving record, probably because it is the most complete record. However, the
ADDRESS for that record is still blank. To fix this, we double-click on the ADDRESS value for
the Rob Smith record to copy 100 Main St from the Rob Smith record to the Robert Smith
record. The results now look something like this:

 FIRST NAME LAST NAME ADDRESS CITY STATE PHONE

X Robert Smith 100 Main St Carrboro NC GHWS$$EWT$

The ADDRESS is highlighted in red in the surviving record to indicate that we manually
added the value.

To review and edit the surviving record and records cluster for the next customer, click
Next and start the process again, repeating as necessary until duplicate records have been
merged and the excess records deleted.

Note: If you find patterns of missing information in surviving records,
especially if you have thousands of potentially duplicate records, consider
returning to dfPower Integration – Match and setting field rules, or record
rules (or both) to help the Duplicate Elimination File Editor make better
choices about surviving records.

Householding

Another use for match codes is householding. Householding entails using a special match
code, called a household ID or HID, to link customer records that share a physical or other
relationship. Householding provides a straightforward way to use data about your
customers' relationships with each other to gain insight into their spending patterns, job
mobility, family moves and additions, and more.

DataFlux dfPower Studio 45

Consider the following pair of records:

First Name Last Name Street Address Phone

Joe Mead 159 Milton St (410) 569-7893

Julie Swift 159 Milton St (410) 569-7893

Given that Joe and Julie have the same address and phone number, it is highly likely that
they are married or at least share some living expenses. Because the organization in our
example prefers to send marketing pieces to entire households rather than just individuals,
and because it is considering offering special account packages to households that have
combined deposits of more than $50,000, we need to know what customers share a
household.

Note: Although a household is typically thought of in the residential
context, similar concepts apply to organizations. For example, householding
can be used to group together members of a marketing department, even if
those members work at different locations.

To create household IDs, we use dfPower Integration – Match to select our customer
records table, and then set up the following match criteria as OR conditions:

• Match Code 1 (MC1): LAST NAME and ADDRESS

• Match Code 2 (MC2): ADDRESS and PHONE

• Match Code 3 (MC2): LAST NAME and PHONE (MC3)

Behind the scenes, dfPower Integration – Match generates three match codes, as shown
below. If any one of the codes match across those records, the application assigns the same
persistent HID to all those records.

First Name Last Name Street Address Phone MC1 MC2 MC3 HID

Joe Mead 159 Milton St (410) 569-7893 $MN #L1 %RQ 1

Julie Swift 159 Milton St (410) 569-7893 $RN #L1 %LQ 1

Michael Becker 1530 Hidden Cove Dr (919) 688-2856 $BH #H6 %B6 2

Jason Green 1530 Hidden Cove Dr (919) 688-2856 $GH #H6 %G6 2

Becker Ruth 1530 Hidden Cove Dr (919) 688-2856 $RH #H6 %R6 2

Courtney Benson 841 B Millwood Ln (919) 231-2611 $BM #M2 %B2 3

Courtney Myers 841 B Millwood Lane (919) 231-2611 $MM #M2 %M2 3

David Jordan 4460 Hampton Ridge (919) 278-8848 $JH #H2 %J2 5

Carol Jordan 4460 Hampton Ridge (919) 806-9920 $JH #H2 %J8 5

Robin Klein 5574 Waterside Drive (919) 562-7448 $KW #W5 %K5 7

Sharon Romano 5574 Waterside Drive (919) 562-7448 $RW #W5 %R5 7

46 DataFlux dfPower Studio

First Name Last Name Street Address Phone MC1 MC2 MC3 HID

Carol Romano 5574 Waterside Drive (919) 239-7436 $RW #W2 %R2 7

Melissa Vegas PO Box 873 (919) 239-2600 $VB #B2 %V2 14

Melissa Vegas 12808 Flanders Ln (919) 239-2600 $VF #F2 %V2 14

Now that our data is integrated, including joining, merging/de-duplicating, and
householding, we move on to the next building block: Enrichment.

For more information about Integration, refer to the DataFlux® dfPower Studio Online Help.

Enrichment
In the Enrichment building block, we add to our existing data by verifying and completing
incomplete fields, and adding new data such as geocodes.

For our data, we are going to perform three types of enrichment:

• Address Verification

• Phone Validation

• Geocoding

Address Verification

Address verification is the process of verifying and completing address data based on
existing address data. As examples:

• You can use an existing ZIP code to determine the city and state.

• You can use an existing street address, city, and state to determine the ZIP or ZIP+4
code.

• You can use an existing ZIP code to determine that the street address actually exists
in that ZIP code.

Currently, a sampling of our data looks like this:

FIRST NAME LAST NAME ADDRESS CITY STATE PHONE

Bill Jones 1324 New Rd NC 716-479-4990

Sam Smith 253 Forest Rd Cary NC 919-452-8253

Julie Swift 159 Merle St NC 716-662-5301

Mary Wise 115 Dublin Woods Dr 614-484-0555

To verify and help complete some of these records, we first launch dfPower® Architect on
the dfPower Base menu, use a Data Source job step to specify our combined customer
records table, and then add an Address Verification job step. In the Address Verification job
step, we assign the following address types to each field:

DataFlux dfPower Studio 47

• ADDRESS: Address Line 1

• CITY: City

• STATE: State

This tells dfPower Architect what type of data to expect in each field. (It is only coincidence
that the City and State field and address types use the same term. We could just as easily
have had a CtyTwn field to which we would assign a City address type.)

For the output fields, we specify the following:

• Output Type: Address Line 1, Output Name: ADDRESS

• Output Type: City, Output Name: CITY

• Output Type: State, Output Name: STATE

• Output Type: ZIP/Postal Code, Output Name: ZIP

• Output Type: US County Name, Output Name: COUNTY

Notice that except for ZIP and COUNTY, all the fields get updated with new data. For ZIP
and COUNTY, Architect creates a new field. Additional Output Fields:

• FIRST NAME

• LAST NAME

• PHONE

After running the job flow, our data now looks like this:

FIRST
NAME

LAST
NAME

ADDRESS CITY STATE ZIP COUNTY PHONE

Bill Jones 1324 E New Rd Durham NC 27712-
1525

Durham 716-479-
4990

Sam Smith 253 Forest Rd Cary NC 27513-
1627

Wake 919-452-
8253

Julie Swift 159 Merle St Orchard
Park

NY 14127-
5283

Erie 716-662-
5301

Mary Wise 115 Dublin Woods
Dr S

Cadiz OH 43953-
1524

Harrison 614-484-
0555

Notice that the ADDRESS, CITY, STATE, and ZIP fields are now completely populated, a
couple of addresses have new directional designations (for example, 1324 E New Rd), all
the ZIP codes are now ZIP+4 codes, and the COUNTY field has been created and populated.
Also note that Julie Swift's State was changed from NC to NY because 14127 is a ZIP code
for western New York.

Note: To change these values, dfPower Architect used data from the US
Postal Service. If you have licensed dfPower Verify, you should have access to
this same data, as well as data for phone validation and geocoding.

48 DataFlux dfPower Studio

Phone Validation

Phone validation is the process of checking that the phone numbers in your data are valid,
working numbers. dfPower Studio accomplishes this by comparing your phone data to its
own reference database of valid area code and exchange information and returning several
pieces of information about that phone data, including a verified area code, phone type, and
MSA/PSA codes. In addition, you can add one of the following result codes to each record:

• FOUND FULL – The full telephone number appears to be valid.

• FOUND AREA CODE – The area code appears to be valid, but the full phone number
does not.

• NOT FOUND – Neither the area code or phone number appear to be valid.

Ignoring the address fields, our data currently looks like this:

FIRST NAME LAST NAME PHONE

Bill Jones 716-479-4990

Sam Smith 919-452-8253

Julie Swift 716-662-5301

Mary Wise 614-484-0555

To validate the phone numbers, we continue our dfPower Architect job flow from address
verification, and add a Phone job step. In the Phone job step, we identify PHONE as the field
that contains phone numbers, select PHONE TYPE, AREA CODE, and RESULT as outputs, and
add FIRST NAME and LAST NAME as additional output fields.

The data now looks like this:

FIRST NAME LAST NAME PHONE AREA CODE PHONE TYPE RESULTS

Bill Jones 716-479-4990 716 Standard FOUND FULL

Sam Smith 919-452-8253 NOT FOUND

Julie Swift 716-662-5301 716 Standard FOUND AREA CODE

Mary Wise 614-484-0555 740 Cell FOUND FULL

Geocoding

Geocoding is the process of using ZIP code data to add geographical information to your
records. This information will be useful because it allows us to determine where customers
live in relation to each other and to the organization in question. We might use this
information to plan new offices or inform new customers of their closest office. Geocode
data can also indicate certain demographic features of our customers, such as average
household income.

To add geocode data to our records, we add a Geocoding job step to our dfPower Architect
job flow, identify our ZIP field, and indicate what kind of geocode data we want. Options
include latitude, longitude, census tract, FIPS (the Federal Information Processing Standard
code assigned to a given county or parish within a state), and census block.

DataFlux dfPower Studio 49

Note: Geocode data generally needs to be used with a lookup table that
maps the codes to more meaningful data.

For more information on the Enrichment building block, start with the Architect topic in the
DataFlux® dfPower Studio Online Help.

Our data is now ready for our customer mailing. However, one data-management building
block remains: Monitoring.

For more information on Enrichment, search for Enrichment in the DataFlux dfPower Studio
Online Help.

Monitoring
Because data is a fluid, dynamic, ever-evolving resource, building quality data is not a one-
time activity. The integrity of data degrades over time as incorrect, nonstandard, and invalid
data is introduced from various sources. For some data, such as customer records, existing
data becomes incorrect as people move and change jobs.

In the fifth and final building block, Monitoring, we set up techniques and processes to help
us understand when data gets out of limits and to identify ways to correct data over time.
Monitoring helps ensure that once data is consistent, accurate, and reliable, we have the
information we need to keep the data that way. For our data, we use two types of
monitoring techniques and processes:

• Auditing

• Alerts

Auditing

Auditing involves periodic reviews of your data to help ensure you can quickly identify and
correct inaccurate data. Auditing requires you to set a baseline for the acceptable
characteristics of your data. For example, it might be that certain fields should:

• Never contain null values

• Contain only unique values

• Contain only values within a specified range

For our customer records, we know there are instances where the CITY field is blank, so we
plan to regularly audit this field to see if the number of blank fields is increasing or
decreasing over time. We will generate a trend chart that shows these changes graphically.

To prepare for auditing, we create a Profile job just as we did in the Profiling building block:
launch dfPower® Profile Configurator component from the dfPower Profile menu, connect
to our customer records database and table, and run the resulting Profile job. This creates a
profile report that appears in dfPower Profile Viewer component and establishes our auditing
baseline.

50 DataFlux dfPower Studio

 Note: For your own data, you might want to select all fields and all
metrics. This gives you the greatest flexibility in auditing data on the fly.

Now, each day, we open and run that same job from the Configurator, making sure to keep
Append to Report (If It Already Exists) checked on the Run Job dialog.

 Note: If you plan to do a lot of data auditing, consider using dfPower
Studio's Base – Batch component to schedule and automatically run your
Profile job or jobs.

When the dfPower Profile - Viewer main screen appears, select Tools > Trend Analysis >
Historical Analysis. In the Metric History dialog, select CITY as the field name and
Blank Count as the metric. If we want to audit data for a certain time period, select start
and end dates and times; a date and time is available for each time we ran the Profile job.

The Metric History screen displays a chart like this:

Metric History dialog

Alerts

Alerts are messages generated by dfPower Studio when data does not meet criteria you set.
For our data, we know that the LAST NAME field is sometimes left blank. To be alerted
whenever this happens, we will set up an alert.

To do this, we launch dfPower Profile Configurator component from the dfPower Profile
menu, choose Tools > Trend Analysis > Alert Configuration, and select our customer
records database and table. Then, select the LAST NAME field and set the following:

DataFlux dfPower Studio 51

• Metric: Blank Count

• Comparison: Metric is Greater Than

• Value: 0

This automatically generates a description of Blank Count is greater than 0.

We also indicate we want to receive alerts by email and specify the email address of a group
of people responsible for addressing these alerts. Now, whenever dfPower Profile finds a
blank LAST NAME field, it sends out an email message.

We can also review alerts through dfPower Profile Viewer component. To do this, in the
Viewer, click Tools > Trend Analysis > Alerts. The Alert dialog appears, listing the
current alerts, similar to what is shown in the following table:

Data Source Name Table Name Field Name Description

Bank Records Customer Records LAST NAME Blank Count is greater than 0

For more information on the Monitoring building block, see the Profile and Batch topics in
DataFlux® dfPower Online Help.

Summary

We hope this scenario has provided you with a solid foundation for starting to use dfPower
Studio through all five data-management building blocks: Profiling, Quality, Integration,
Enrichment, and Monitoring.

As we mentioned at the beginning of this chapter, this scenario covers a sample of dfPower
Studio. For more information on what you can do with dfPower Studio, see DataFlux
dfPower Online Help.

52 DataFlux dfPower Studio

Technical Support
This section addresses questions and issues related to DataFlux® dfPower Studio.

Frequently Asked Questions

Error Messages

If you do not find your answer, please contact DataFlux Technical Support.

Frequently Asked Questions
Below is a list of frequently asked questions related to getting started with dfPower Studio.

Licensing

Can I access dfPower Studio using my laptop?

Licensing of dfPower Studio can be implemented with different mobile licensing options.
Depending on how your network is configured, you may be able to access dfPower while off
of your network using checked out or "borrowed" licenses. Typically a borrowed license
specifies certain features enabled for a specified number of days.

How can I access dfPower Studio if my license server goes down?

Licensing can be set up using three redundant servers. With this architecture, only two need
to be running at any given time for the license server to verify licenses. By maintaining an
identical copy of the license file on each server, you avoid having a single point of failure.
Contact your DataFlux representative for more information on configuring three-server
redundancy.

Can I access dfPower Studio through Remote Desktop, Citrix® Metaframe®, or
other Windows® Terminal Service?

Yes, your dfPower Studio license can be configured to check out a license while running in a
Windows Terminal Services guest session. This is a feature that can be enabled at the time
your license is created.

Why do I receive a notice that a license is about to expire when I open dfPower
Navigator?

This annual licensing notification appears when one or more of your DataFlux product
licenses is about to expire. DataFlux products have an annual license model to allow users
to access services and run jobs. The system keeps track of the expiration dates for each
feature, and a notice alerts users to the impending license expiration using the following
process:

1. Sixty days prior to license expiration, a dialog begins appearing daily in dfPower
Navigator. The dialog DataFlux contains a list of the licensed features set to expire, as
well as the number of days left for each license. You can select Do not display this
warning again to disable the warning after it appears at least one time.

DataFlux dfPower Studio 53

mailto:techsupport@dataflux.com?subject=DataFlux%20Technical%20Support

2. When the first licensed feature reaches the expiration date, another dialog displays
daily, alerting the user that one or more features have expired and these features are
now operating within a thirty-day grace period. The list displays the number of days
remaining for each feature (or if the license has expired and no longer accesses the
product). This notice cannot be disabled.

3. After the thirty-day grace period, services or jobs requested through dfPower
Navigator, but have expired, no longer run.

The server log keeps records of all notification warnings generated.

Contact your DataFlux sales representative to renew your DataFlux product license(s).

Requirements

Why is TKTS failing to read SAS® Data Sets on AIX®?

In order to access SAS Data Sets on AIX, you must have AIX 5.3 with patch level 6 installed
on your system.

Error Messages
Below is a possible error message related to getting started with dfPower Studio.

Why am I getting the following error messages?

[time of error] (DATAFLUX) UNSUPPORTED: "DFLLDIAG2" (PORT_AT_HOST_PLUS)
phamj4@UTIL0H4GHXD1 (License server system does not support this feature. (-
18,327))

[time of error] (DATAFLUX) UNSUPPORTED: "DFLLDIAG1" (PORT_AT_HOST_PLUS)
phamj4@UTIL0H4GHXD1 (License server system does not support this feature. (-
18,327))

These error messages refer to the licenses for two built-in features used internally by
DataFlux for debugging. These licenses are not distributed, so the license checkout request
process for these two licenses fails and produces these errors. This is normal and should
occur only one time, when the license checkout request is made for the first time.

54 DataFlux dfPower Studio

Appendix
Appendix A: dfPower Architect Configuration Directives

Appendix B: dfPower Data Access Component Directives

Appendix A: dfPower Architect Configuration
Directives
Following is a list of common configuration settings for your architect.cfg file. There is an
additional list of Architect Configuration directives when you use DataFlux Integration
Server and dfPower Studio together. Refer to the DataFlux Integration Server Online Help
for these directives.

Setting Description

BLUEFUSION/QKB Path to Blue Fusion QKB.

Example
BLUEFUSION/QKB=C:\Program
Files\DataFlux\QltyKB\CI\2008A

BLUEFUSION/SURFACEALL Many of the Standardization definitions do not default to allow
parsed input. If you do not have dfPower Customize, use this
configuration setting to allow parsed input. If set to true, parsed
input is allowed.

Example
BLUEFUSION/SURFACEALL=true

CLUSTER/BYTES Bytes of memory to use for Clustering/Cluster Update step.

Example
1024 = 1 Kilobyte, 41943040 = 40 Megabytes
CLUSTER/BYTES=67108864

CLUSTER/LOG Clustering/Cluster Update log file generation. 0 means no log file
will be created, 1 means a log file will be created.

Example
CLUSTER/LOG=0

DFCLIENT/CFG dfIntelliServer Client Config Path.

Example
DFCLIENT/CFG=C:\Program
Files\DataFlux\dfIntelliServer\etc\dfclient.cfg

DataFlux dfPower Studio 55

Setting Description

EMAILCMD Email command to use for Monitor email alerts. Please enter
your SMTP server name.

Example
EMAILCMD=cscript -nologo "C:\Program
Files\DataFlux\dfPower Studio\8.2\bin\mail.vbs" -s
smtp_server_name_here "%T" < "%B"

FRED/LOG Set it to 1 or 0 to control logging. By default logging is turned
off.

Example
FRED/LOG

MONITOR/REPOSFILE Repository configuration file.

Example
MONITOR/REPOSFILE=

SORTBYTES Bytes of memory to use while sorting, joining, etc.

Example
1024 = 1 Kilobyte, 41943040 = 40 Megabytes
SORTBYTES=32000000

TEMP Path where temporary files are stored.

Example
TEMP=C:\Program Files\DataFlux\dfPower
Studio\8.2\temp\

VERIFY/BF Path to internal Verify data libraries.

Example
VERIFY/BF=C:\Program Files\DataFlux\dfPower
Studio\8.2\datalib\

VERIFY/CACHESIZE A percentage (0 to 100) which tells Verify how much data to
cache in memory. 100 would take up more memory, but would
be faster.

Example
VERIFY/CACHESIZE=20

VERIFY/CANADA Path to Canada verify data.

Example
VERIFY/CANADA=C:\Program Files\DataFlux\dfPower
Studio\8.2\mgmtrsrc\RefSrc\SERPData

VERIFY/GEO Path to geocoding data.

Example
VERIFY/GEO=C:\Program Files\DataFlux\GeoPhoneData

56 DataFlux dfPower Studio

Setting Description

VERIFY/PRELOAD A string representing which US states to preload into memory to
make Verify run faster. Enter ALL for all data.

Example
VERIFY/PRELOAD=

VERIFY/USERDI Enable/disable RDI processing. 1 means enable, 0 means
disable.

Example
VERIFY/USERDI=0

VERIFY/USEDPV Enable/disable DPV processing. 1 means enable, 0 means
disable.

Example
VERIFY/USEDPV=0

VERIFY/USPS Paths to USPS data.

Example
VERIFY/USPS=C:\Program Files\DataFlux\dfPower
Studio\8.2\mgmtrsrc\refsrc\USPSData\

VERIFY/USPSINST USPS data installed flag.

VERIFYINTL/CFG Config file for Verify International.

Example
VERIFYINTL/CFG=

VERIFYWORLD/DB Path to where Verify-World data is stored.

Example
VERIFYWORLD/DB=C:\Program Files\DataFlux\dfPower
Studio\8.2\mgmtrsrc\refsrc\

VERIFYWORLD/UNLK Unlock code for Verify-World step (must be enclosed in single
quotes).

Example
VERIFYWORLD/UNLK=''

DataFlux dfPower Studio 57

Appendix B: dfPower Data Access Component
Directives
The following table lists the settings in the app.cfg file, which are used by the Data Access
Component (DAC) to determine the operation it will perform.

Setting Description

Command file
execution

Specifies a text file with SQL commands (one per line). These commands
run in turn, on any new connection. For example, they can be used to set
session settings. This is only implemented for the ODBC driver.

The USER\savedconnectiondir configuration value may specify the path to
the saved connections. The DAC checks for files with the same filename as
the DSN and a .sql extension.

DAC Logging Specifies whether or not to create a log file for DAC operations. The DAC
checks the following values and locations, based on your operating system:

Windows - Checks the USER\logfile configuration value and then the DAC
checks SYSTEM\logfile for a string representing a log file name.

UNIX - Checks the sql_log.txt file in the current working directory.

DFTK log file Specifies the log file that interacts with the DFTKSRV layer and is only
useful for debugging issues specific to dftksrv. The DAC checks the
following values and locations, based on your operating system:

Windows- Checks the USER\dftklogfile value and the SYSTEM\dftklogfile
value. The $DFTKLOGFILE value.

UNIX - Checks the $DFTKLOGFILE value.

Disable CEDA Specifies whether to disable CEDA. This setting is only applicable to TKTS
connections. The DAC checks the following values and locations, based on
your operating system:

Windows - Checks the USER/dftkdisableceda configuration value, which
should specify any non-null value, for example, yes. The SYSTEM
\dftkdisableceda value. The $DFTKDISABLECEDA value.

UNIX - Checks the $DFTKDISABLECEDA value.

58 DataFlux dfPower Studio

Setting Description

Oracle
NUMBER(38)
handling

Specifies whether to treat NUMBER (38) columns as an INTEGER (which is
the default) or a REAL value. This setting applies if Oracle is the only driver
to which you are connecting. The DAC checks the following values and
locations, based on your operating system:

Windows - Checks the USER\[dsn_name]\oranum38real has a double
word value of 1. Next, the DAC checks that
SYSTEM\[dsn_name]\oranum38real has a double word value of 1.

UNIX - Checks the $HOME/.dfpower/dsn.cfg file for [dsn_name] =
oranum38real.

Suffix for
CREATE TABLE
statements

Specifies a string that is appended to every CREATE TABLE statement. If
you include %t in this string, it is substituted with the table name. The DAC
checks the following values and locations, based on your operating system:

Windows - Checks the USER\[dsn_name]\postcreate specified string.
Next, the DAC checks that SYSTEM\[dsn_name]\postcreate specifies a
string.

UNIX - This setting is not supported.

System saved
connection

Specifies where to find system saved connections. The DAC checks the
following values and locations, based on your operating system:

Windows - Checks the DAC/SAVEDCONNSYSTEM configuration value.
Next, the DAC checks the DFEXEC_HOME environment variable, in the
$DFEXEC_HOME\etc\dsn directory.

UNIX - Checks the $DFEXEC_HOME/etc/dsn directory.

Table type
filter

Limits the list of tables to several preset types. The default is
'TABLE','VIEW','ALIAS','SYNONYM'. If you set this value to * (asterisk) the
list will not be filtered. The DAC checks the following values and locations,
based on your operating system:

Windows - The USER\[dsn_name]\tablelistfilter specifies a comma
delimited string that lists single quoted values that indicate table types.
Next, the DAC checks whether SYSTEM\[dsn_name]\tablelistfilter specifies
a comma delimited string.

UNIX - This setting is not supported.

DataFlux dfPower Studio 59

Setting Description

TK Path Specifies where TK files are located. The dftksrv path and core directory
should be specified. $DFTKPATH may specify the TK path. If it does not, the
DAC checks the following values and locations, based on your operating
system:

Windows - The USER\tkpath value. The SYSTEM\tkpath value. The
$DFEXEC_HOME\bin;$DFEXEC_HOME\bin\core\sasext location.

UNIX - Check $TKPATH. Next, check $DFEXEC_HOME/lib/tkts.

TKTS DSN
directory

Specifies the path where TKTS DSNs are stored in XML files. $DFTKDSN
may specify the path to the TKTS DSN directory. If it does not specify the
value, the DAC checks the following values and locations, based on your
operating system:

Windows - The $DFEXEC_HOME\etc\dftkdsn\ directory.

UNIX - The $DFEXEC_HOME/etc/dftkdsn\ directory.

TKTS log file Specifies the log file that is produced by the TKTS layer and is useful for
debugging TKTS issues. The DAC checks the following values and locations,
based on your operating system:

Windows - The USER\tktslogfile configuration value. The
SYSTEM\tktslogfile value. The $TKTSLOGFILE value.

UNIX - The $TKTSLOGFILE value.

TKTS startup
sleep

Specifies how much time, in seconds, to delay between the start of the
dfktsrv program and the booting of TK. The DAC checks the following
values and locations, based on your operating system:

Windows - The USER\tktssleep configuration value. Next, the DAC checks
the SYSTEM\tktssleep value.

UNIX - This setting is not supported.

Use braces Specifies whether to enclose DSN items with braces when they contain
reserved characters. The DAC checks the following values and locations,
based on your operating system:

Windows - The USER\[dsn_name]\usebraces has a double word value of
1, where [dsn_name] is the name of the DSN. Next, the DAC will check the
SYSTEM\[dsn_name]\usebraces value.

UNIX - The $HOME/.dfpower/dsn.cfg file for [dsn_name] = usebraces.

60 DataFlux dfPower Studio

Setting Description

User saved
connection

Specifies where to find user saved connections. The DAC checks the
following values and locations, based on your operating system:

Windows - The USER\savedconnectiondir configuration value. Next, the
DAC checks the application settings directory for the user, which is usually
in the \Documents and Settings directory, in the DataFlux\dac\[version]
subdirectory.

UNIX - The $HOME/.dfpower/dsn directory.

DataFlux dfPower Studio 61

Glossary

C

case definition

A set of logic used to accurately change the case of an input value, accounting for unique
values that need to be cased sensitively, such as abbreviations and business names.

chop tables

A proprietary file type used by DataFlux as a lex table to separate characters in a subject value
into more usable segments.

D

data type

The semantic nature of a data string. The data type provides a context determining which set of
logic is applied to a data string when performing data cleansing operations. Example data types
are: Name, Address, and Phone Number.

definition

Another name for an algorithm. The definitions in the Quality Knowledge Base are the data
management processes that are available for use in other SAS or DataFlux applications like
dfPower Studio or SAS Data Quality Server.

G

grammars

Parsing rule libraries used for complex parsing routines.

I

identification definition

A set of logic used to identify an input string as a member of a redefined or user-defined value
group or category.

L

locale guessing

A process that attempts to identify the country of origin of a particular piece of data based on an
address, a country code, or some other field.

M

match code

The end result of passing data through a match definition. A normalized, encrypted string that
represents portions of a data string that are considered to be significant with regard to the
semantic identity of the data. Two data strings are said to "match"if the same match code is
generated for each of them.

62 DataFlux dfPower Studio

match definition

A set of logic used to generate a match code for a data string of a specific data type.

match value

A string representing the value of a single token after match processing.

P

parse

The process of dividing a data string into a set of token values. For example: Mr. Bob Brauer
[Mr. = Prefix , Bob = Given Name, Brauer = Family Name]

parse definition

A name for a context-specific parsing algorithm. A parse definition determines the names and
contents of the sub-strings that will hold the results of a parse operation.

pattern analysis definition

A regular expression library that forms the basis of a pattern recognition algorithm.

phonetics

An algorithm applied to a data string to reduce it to a value that will match other data strings
with similar pronunciations.

Q

QKB

The Quality Knowledge Base (QKB) is the collection of files and configuration settings that
contain all DataFlux data management algorithms. The QKB is directly editable using dfPower
Studio.

R

regular expression

A mini-language composed of symbols and operators that enables you to express how a
computer application should search for a specified pattern in text. A pattern may then be
replaced with another pattern, also described using the regular expression language.

S

sensitivity

Regarding matching procedures, sensitivity refers to the relative tightness or looseness of the
expected match results. A higher sensitivity indicates you want the values in your match results
to be very similar to each other. A lower sensitivity setting indicates that you would like the
match results to be "fuzzier" in nature.

standardization definition

A set of logic used to standardize a string.

standardization scheme

A collection of transformation rules that typically apply to one subject area such as company
name standardization or province code standardization.

DataFlux dfPower Studio 63

64 DataFlux dfPower Studio

T

tokens

The output strings of a parse process. These are words or atomic groups of words with semantic
meaning in a data string. A set of expected tokens is defined for each data type.

V

vocabularies

A proprietary file type used for categorizing data look-ups pertinent to a specific subject area.

	Cover_dfPower_Studio
	TitlePg_dfPower_GetStartedGde
	dfPowerGuide

